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Abstract

When deploying a machine learning model, one
should aim not only to optimize performance
metrics such as accuracy but also care about
model fairness and reliability. Fairness means
that the model is prevented from learning spu-
rious correlations between a target variable
and socio-economic attributes, and is gener-
ally achieved by applying debiasing techniques.
Model reliability stems from the ability to de-
termine whether we can trust model predictions
for the given data. This can be achieved using
uncertainty estimation (UE) methods. Debi-
asing and UE techniques potentially interfere
with each other, raising the question of whether
we can achieve both reliability and fairness at
the same time. This work aims to answer this
question empirically based on an extensive se-
ries of experiments combining state-of-the-art
UE and debiasing methods, and examining the
impact on model performance, fairness, and
reliability.1

1 Introduction

When deploying a machine learning (ML) model
in production, care should be taken to look beyond
prediction performance metrics such as accuracy or
F1. We believe that modern ML-based applications
should be evaluated along two additional critical
dimensions: reliability and fairness.

A reliable system should not only perform well
on average but also be capable of identifying situa-
tions when it is unable to make accurate predictions.
By incorporating mechanisms to detect such cases,
we can implement appropriate fallback mecha-
nisms such as involving human operators or more
advanced models for final decision-making (El-
Yaniv et al., 2010; Geifman and El-Yaniv, 2017).
This is especially crucial in safety-critical domains
like medicine, where the cost of mistakes is high,

*Research was conducted while working at TII.
1The code is available online at https://github.

com/mbzuai-nlp/fairlib_uncertainty

or in high-load applications where it is impossible
to rely solely on automatic decisions (e.g. user con-
tent moderation). The better these mechanisms
work, the better the model is in terms of relia-
bility. In a broader context, a reliable model is
characterized by its consistent performance across
decision-making tasks involving the uncertainty of
predictions (Tran et al., 2022b). In this work, we
consider two tasks: selective classification (Geif-
man and El-Yaniv, 2017), i.e. the ability to abstain
from potentially erroneous predictions; and out
of distribution (OOD) detection (Hendrycks and
Gimpel, 2017), i.e. recognizing instances that are
different from the domain of the training set.

Fairness is another critical dimension that needs
careful consideration. ML models often exhibit bi-
ases due to artifacts in training data or pre-trained
language models that can cause, for example, unfair
decisions correlated with race, gender, and other de-
mographic and socio-economic factors (Díaz et al.,
2019; Park et al., 2018; Badjatiya et al., 2019). It is
important to address these biases as they can lead to
inequity in user experience, perpetuate stereotypes,
and cause other forms of representational harm to
users (Blodgett et al., 2020).

While standard prediction performance metrics
indicate how well a model is performing in gen-
eral, they do not capture how a model may behave
inconsistently across different conditions or pro-
tected groups (Dwork et al., 2012). Therefore, both
reliability and fairness are not captured by stan-
dard prediction performance metrics, and generally
cannot be achieved without deliberate effort.

Enhancing reliability can be accomplished
through the use of advanced uncertainty estimation
(UE) techniques (Lakshminarayanan et al., 2017;
Gal and Ghahramani, 2016; Lee et al., 2018; Liu
et al., 2020; Podolskiy et al., 2021; Xin et al., 2021;
Yoo et al., 2022). Promoting model fairness entails
defining fairness metrics and employing special
debiasing techniques (Elazar and Goldberg, 2018;
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Wang et al., 2019; Ravfogel et al., 2020; Han et al.,
2021, 2022a,d; Baldini et al., 2022).

Just as debiasing methods have been observed
to make models more vulnerable to adversarial at-
tacks (Xu et al., 2021; Tran et al., 2022a), they
have the potential to impact model reliability in
terms of selective classification and OOD detection
performance. While the majority of research has
focused on the trade-off between model fairness
and performance (Liang et al., 2021; Han et al.,
2022b,d), no work has investigated the trade-off
between fairness and reliability. As such, the main
research questions of this work are: (a) whether
there is interference between debiasing and UE
techniques; (b) whether it is possible to achieve
fairness and model reliability simultaneously; and
(c) what combinations of techniques lead to the
best trade-offs. We address these questions by con-
ducting a large-scale empirical investigation that
combines state-of-the-art UE and debiasing meth-
ods. For evaluation, we employ text classification
datasets and various transformer-based models.

Our main findings are as follows: (a) debiasing
can have a more substantial negative impact on
selective classification performance than accuracy;
(b) the results depend on the distribution of target
classes and protected attributes in the test set; (c)
rejecting predictions in selective classification can
impact relative fairness between different debiasing
methods; and (d) OOD detection is also vulnerable
to debiasing, but can be mitigated with proper UE
techniques. On the basis of our experiments, we
suggest best-practice approaches to achieve a good
trade-off between model reliability and fairness.

2 Background

2.1 Debiasing and Fairness

Consider we have a labeled dataset D =
(xi, yi, gi)

n
i=1, where xi ∈ X is an input text, yi ∈

Y is a label of a target variable (e.g., sentiment),
and gi ∈ G is a private attribute associated with xi
(e.g., author gender). In the context of debiasing,
our objective is to train a model using the dataset
D that not only achieves high accuracy in predict-
ing Y but also exhibits fairness. Specifically, we
aim to minimize the disparity in true positive rates
(TPR) across different protected attributes, which
is known as equal opportunity fairness (Hardt et al.,
2016): GAPTPR = |TPRg − TPR¬g|, where
TPRg and TPR¬g designate TPR within protected
groups g and ¬g.

2.2 Debiasing Methods

For our experiments, we selected state-of-the-art
techniques from extrinsic debiasing methods avail-
able in the Fairlib library (Han et al., 2022d): “pre-
processing”, “at-training”, and “post-processing”.
For quick reference, all the methods and their cor-
responding acronyms are summarized in Table 1 in
Appendix A.

Pre-processing methods adjust the training set to
be balanced across protected groups via resampling
or reweighting instances. Balanced Training with
Joint balance (BTJ; Lahoti et al. (2020)) reweights
training instances to balance the joint distribution
of protected attributes and target labels. A simi-
lar method, Balanced Training with Equal Op-
portunity (BTEO; Han et al. (2022a)), balances
the protected attributes within “advantage” classes
through resampling instances based on equal op-
portunity objectives. BTEO and BTJ are equivalent
when the target distribution is inherently balanced.
However, when it is not, the approach adopted in
BTEO helps to mitigate the susceptibility of BTJ
to small-sized minority groups.

At-training methods modify the training proce-
dure or objective. Adversarial Training (Adv;
Elazar and Goldberg (2018)) extends the training
objective with a discriminator component respon-
sible for making the model unlearn the protected
attributes. The Diverse Adversaries approach
(DAdv; Han et al. (2021)) strengthens Adv by
adding an ensemble of adversaries to the loss and
subjects them to a diversity constraint for learn-
ing orthogonal hidden representations from one
another. This approach improves the stability of
the training and reduces bias compared to the Adv.
Group Difference (GD; Shen et al. (2022)) adds a
loss component that minimizes the loss gap be-
tween different groups. We use the variant of
this method GDdiff that minimizes the differences
across protected groups within each class. Fair
Batch Selection (FairBatch; Roh et al. (2021)) dy-
namically adjusts the probability of resampling in-
stances in each minibatch during training to achieve
loss disparity across protected groups.

A post-processing method, Iterative Null-space
Projection (INLP; Ravfogel et al. (2020)), re-
moves protected information from an already
trained model by iteratively projecting its hidden
representations to the null-space of protected at-
tribute discriminators. The purified representations
are subsequently employed for classification.



2.3 Uncertainty Estimation and Reliability

Model reliability refers to its capacity to perform
well across a wide range of uncertainty-related
tasks (Tran et al., 2022b), such as selective clas-
sification, OOD detection, and adversarial attack
detection. Uncertainty is a score that quantifies
the amount of our trust in a model prediction on a
given instance and is intended to correlate with the
chance of making a mistake. Estimated uncertainty
scores are commonly used as a decision rule in the
aforementioned tasks. For example, in selective
classification, instances x with a high uncertainty
score u(x) are rejected or replaced with predic-
tions of human experts or more advanced systems.
Similarly, uncertainty exceeding a given thresh-
old u(x) > uood indicates a high likelihood that
the instance is OOD. In information theory, uncer-
tainty has a concrete manifestation as the entropy
of some distribution (e.g., a predictive distribution
u(x) = H[p(y|x)]). However, in a general sense,
any score that demonstrates commendable perfor-
mance in the aforementioned tasks can be consid-
ered as a measure of uncertainty. It is common
to distinguish two types of uncertainty that arise
from two different sources: (a) aleatoric uncertainty
arises from irreducible noise in data and inherent
ambiguity in tasks that persists even with perfect
knowledge and modeling techniques; and (b) epis-
temic uncertainty reflects the lack of knowledge
about optimal model parameters, and can be miti-
gated by gathering more training data. Their sum
(total uncertainty) is commonly used as an indica-
tor of mistakes in selective classification; epistemic
uncertainty is also crucial for OOD detection.

2.4 Uncertainty Estimation Methods

We experiment with various widely used UE meth-
ods that capture different types of uncertainty:
aleatoric, epistemic, and total uncertainty. As a
baseline, we use Softmax Response (SR; Cordella
et al. (1995); Geifman and El-Yaniv (2017)), which
simply uses maximum probability from the soft-
max layer as a confidence score.

A widely-used computationally intensive ap-
proach to UE is based on Monte-Carlo dropout
(MC; Gal and Ghahramani (2016)). In this work,
we use the following UE scores: Bayesian Active
Learning with Disagreement (BALD; Houlsby et al.
(2011)) and Sampled Maximum Probability (SMP;
Gal et al. (2017)). BALD captures epistemic uncer-
tainty, while SMP captures the total uncertainty.

Methods based on the modeling probability den-
sity of hidden instance representations are com-
putationally efficient alternatives that have been
shown to be effective for epistemic UE. One ro-
bust method of this type is Mahalanobis Distance
(MD; Lee et al. (2018); Podolskiy et al. (2021)),
which is based on estimating the minimal class-
conditional probability of an input instance x that
follows a Gaussian distribution. The uncertainty
score is computed as the Mahalanobis distance be-
tween latent instance representations of x and the
closest centroid of a class.

To measure aleatoric uncertainty, we use Deep
Fool (Ducoffe and Precioso, 2018), whereby we
compute the l2 norm of the minimum perturbation
vector that is required to apply to a latent represen-
tation to change the prediction of a model. The
smaller the norm, the higher the uncertainty.

In addition, we combine MD and DeepFool into
a single score, which we call Hybrid Uncertainty
Quantification (HUQ; Vazhentsev et al. (2023)).
Depending on whether the instance lies close to
the out-of-distribution area of the feature space, or
around the discriminative border between classes,
we use different types of uncertainty. Details of the
Hybrid UQ method are presented in Appendix H.

For quick reference, all the methods and their
corresponding acronyms are summarized in Table 1
in Appendix A.

3 Experimental Setup

We evaluate the performance of UE techniques over
the tasks of selective classification and OOD de-
tection and compare standard models with models
where we have applied a debiasing method.

3.1 Datasets

We experiment with two text classification datasets
widely used for the evaluation of debiasing tech-
niques in previous work: Moji (Blodgett et al.,
2016) and Bios (De-Arteaga et al., 2019).

The Moji dataset is a collection of English tweets
paired with a binary protected attribute that repre-
sents the ethnicity of the tweet author. It captures
the usage of English in two registers: Standard
American English (SAE) and African American
English (AAE). The target variable is a binary sen-
timent of tweets (HAPPY and SAD).

Bios comprises biographies annotated with 28
profession classes as the target variable. Due to the
extreme scarcity of some classes in the dataset, we
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(a) Moji with the imbalanced test and validation sets.
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Figure 1: Trade-off between RC-AUC of selective classification with HUQ and fairness (left) and between accuracy
and fairness (right) on Moji (the BERTweet model). We removed results for INLP and FairBatch from this figure
due to extremely high RC-AUC values for these debiasing methods. The fairness scores are presented alongside
each method for better comparison.

have chosen to use a subsample that focuses on the
nine most prevalent classes. The protected attribute
is the binary gender.

As debiasing aims to remove the discrepancy
between the distribution learned by the model from
the training set and a “desired” distribution that is
pure from the influence of stereotypes and preju-
dices in the data, we consider it important to report
evaluation results for two versions of the datasets.
In the first version, which we call “imbalanced”,
the distributions p(g|y) are the same in train, val-
idation, and test sets. This reflects the common
ML setting, where the test data is similar to train-
ing data and inherits all biases present in it. In
the second version, which we call “balanced”, the
distribution p(g|y) in the test and validation sets is
balanced, which means there is no preferable pro-
tected attribute within each class. In both cases, the
training distribution is not changed. The statistics
of the datasets and theoretical motivation behind
the various test distributions are presented in Ap-
pendix C.

3.2 Models

For experiments, we use three models that were
employed in previous work on fairness and demon-
strated strong performance on the respective tasks:
pre-trained BERT model (“bert-base-cased”; De-
vlin et al. (2019)) for Bios, BERTweet (Nguyen
et al., 2020) for Moji, and a frozen DeepMoji en-
coder (Felbo et al., 2017) with a three-layer percep-
tron (MLP) as a classification head from Shen et al.
(2022) also for Moji. All parameters of BERT and
BERTweet are fine-tuned on the training sets, while
for DeepMoji+MLP, we fine-tune only the MLP
head. The hyperparameter optimization process is
discussed in detail in Section 3.4.

3.3 Metrics

The models are evaluated according to their per-
formance on the classification task via accuracy, a
gap-based fairness metric, and the quality of UE.

Debiasing. The quality of debiasing methods is
evaluated according to the equal opportunity fair-
ness metric. It measures a lack of disparity in true
positive rate across groups formed by the protected
attribute (Han et al., 2023). Since the details of this
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Figure 2: Trade-off between RC-AUC of selective classification with HUQ and fairness (left), and between accuracy
and fairness (right) on Bios (the BERT model). The fairness scores are presented alongside each method for better
comparison.

metric vary in the literature, we provide a step-by-
step algorithm for its calculation in Appendix D.

Uncertainty Estimation. UE methods are evalu-
ated on selective classification and OOD detection
tasks. In selective classification, we test the ability
to detect and reject model mistakes using uncer-
tainty scores as predictors. The standard metric for
this task is RC-AUC (El-Yaniv et al., 2010) – the
area under the risk–coverage curve, where the cov-
erage is the percentage of retained instances with
the lowest uncertainty, and the risk is the average
loss over these instances; lower is better. Follow-
ing Xin et al. (2021), we use a binary loss for cal-
culating the risk. And example of a risk–coverage
curve is presented in Figure 6 in Appendix E.

To evaluate the quality of OOD detection, we
mix the test set of the target dataset (Moji or Bios)
with a series of datasets considered to be OOD.
Then, we calculate the ROC-AUC metric, consid-
ering the uncertainty score as a predictor of an
instance from an OOD dataset. We obtain ROC-
AUC for each OOD dataset and average metric
values across them all. This is a standard ap-
proach adopted in the UE literature (Hendrycks
et al., 2019; Hu and Khan, 2021; Zhou et al., 2021).

We cannot use the CLINC (Larson et al., 2019) and
ROSTD (Schuster et al., 2019) datasets, which are
other commonly used benchmarks for OOD detec-
tion since these datasets do not provide annotation
of protected attributes. The details of the datasets
used to represent an OOD domain are described in
Appendix C.3.

3.4 Hyperparameter Optimization
We split the hyperparameter selection into two
steps. In the first step, we select hyperparameters
for training models without debiasing by optimiz-
ing the model accuracy. We tune learning rate,
batch size, and weight decay via grid search (see
the grid and the optimal values in Appendix B).

In the second step, we select hyperparameters
of debiasing methods on a fixed grid. We opti-
mize a multi-criteria objective Distance To the Op-
timum (DTO; Marler and Arora (2004); Han et al.
(2022a)). The optimum is a utopia point assumed
to be a model that achieves 100% performance in
terms of accuracy and fairness:

DTO =
√
(1− Perf.)2 + (1− Fairness)2.

To mitigate the problem with different absolute val-
ues of performance and fairness metrics achievable



for the considered task, we use a balanced version
of DTO, where evaluation scores are normalized by
their maximum values in the set of experiments (e.g.
for checkpoints from different epochs, in the case
of training or for models with different hyperparam-
eters, in the case of hyperparameter optimization).

Having optimized the hyperparameters, we con-
duct experiments with five random seeds to report
mean and confidence intervals. The hyperparam-
eter grid for each debiasing method and computa-
tional resources involved in experiments are pre-
sented in Appendix B.

4 Results

4.1 Selective Classification

First of all, consider the selective classification per-
formance (RC-AUC) individually without relation
to fairness. Complete results for Bios are presented
in Tables 13 and 14, the results for Moji are pre-
sented in Tables 15 to 18 in Appendix F. TPR val-
ues for each individual class and protected attribute
are presented in Tables 21 to 26 in Appendix I.

On Bios, the SR baseline is substantially outper-
formed by DeepFool, Monte-Carlo dropout, and
HUQ, while density-based methods MD and DDU
usually do not provide any improvements. The poor
performance of the latter methods might be due to
the Bios test set not having a marked covariate
shift, and subsequently, not containing many OOD
instances that could be spotted by density-based
methods. The hybrid method, which mixes mul-
tiple uncertainty scores, most often outperforms
other UE methods for both versions of the dataset.
For example, on Bios with an imbalanced test set,
HUQ outperforms other UE methods for all debias-
ing techniques except DAdv and FairBatch, where
it also has substantial improvements over the SR
baseline. For the standard model and Adv, it im-
proves RC-AUC by more than 14% compared to
the SR baseline, for GDdiff and INLP, by around
30%, and for BTEO and BTJ, by around 10%.

On Moji, none of the UE techniques are able
to outperform the SR baseline, except in the case
of INLP, where the baseline has a very high RC-
AUC. In this case, density-based methods and HUQ
substantially improve the result, though it is much
worse than other methods.

Since HUQ often achieves the best results for
selective classification, we use it to perform further
analysis of debiasing techniques.

Results on the Imbalanced Test Sets. In Fig-
ures 1a and 2a, we present the trade-off between
RC-AUC and fairness and between accuracy and
fairness for models debiased using various methods.
From these figures, we can see that on both Moji
and Bios, higher fairness results in worse selective
classification performance over the imbalanced test
sets. Comparing the results for RC-AUC and ac-
curacy, we see that in some cases the malignant
increase in RC-AUC is much more substantial than
the loss in accuracy. For example, while accuracy
for the BTEO and GDdiff methods on Bios is re-
duced by only 0.9% and 1.5% in relative terms,
RC-AUC increases by more than 25% and 34%,
respectively.

On both Moji and Bios, the best trade-off be-
tween fairness and reliability is achieved by BTJ.
On Moji, it gives the smallest increase in RC-AUC,
while giving a boost in fairness comparable with
other methods. On Bios, this method does not
increase RC-AUC at all, while also giving a sub-
stantial improvement in fairness. Considering the
results on Bios, it is also worth noting that Adv,
DAdv, and BTEO also achieve a good trade-off:
while they worsen RC-AUC, they also lead to a
big improvement in fairness. INLP affects both
fairness and RC-AUC only slightly.

Results on the Balanced Test Sets. Figures 1b
and 2b present accuracy and RC-AUC obtained
on the balanced test sets. Since in these test sets,
the protected attribute ratios for each of the target
classes are balanced, the results are very different
from the previous case. In this setting, we can
see that on Moji, debiasing positively affects both
the accuracy and the selective classification per-
formance (Figure 1b and Figure 8 in Appendix F).
All debiasing methods while improving fairness
also substantially improve accuracy and RC-AUC,
with BTEO and BTJ offering the best trade-offs.
These results are strictly opposite to the results ob-
tained on the imbalanced test sets (Figure 1a and
Figure 7 in Appendix F). This phenomenon could
be attributed to the fact that, during the process of
removing bias accumulated from the training set,
the modeled probability is adjusted to align more
closely with the “desired” distribution. Therefore,
testing on the dataset that is closer to this “desired”
distribution also demonstrates the improvement in
model performance due to debiasing (see theoreti-
cal justification in Appendix C.1).

On Bios, debiasing still does not help obtain no-



350 400 450 500 550 600 650 700 750
RC-AUC 

89

90

91

92

93

94

95

Fa
irn

es
s 

AdvBTEO

BTJ DAdv

FairBatch

GD_diff

INLP

Standard

Figure 3: Effect of varying hyperparameters for debi-
asing methods on Bios with the imbalanced test and
validation sets (BERT model).

table improvements in RC-AUC or accuracy. How-
ever, in this setting, some debiasing methods do
not diminish the performance. While we saw per-
formance degradation for Adv, DAdv, and BTEO
in the setting with an imbalanced test set, in this
case, there is no gap of note. Overall, for Bios,
the best trade-off is achieved by BTJ, DAdv, Adv,
and BTEO as they lie in the upper part of the chart,
providing high fairness with little or no degradation
of RC-AUC.

Effect of Various Hyperparameters in Debias-
ing Methods. Figure 3 presents the results with
varying hyperparameters of the debiasing methods.
The hyperparameters related to model training are
still optimal. We keep only Pareto optimal points in
the chart: points where both fairness and RC-AUC
deteriorate are not shown. The standard model and
models debiased with BTEO and BTJ have only
one point since they do not have variable hyperpa-
rameters. The presented results show that for some
methods like Adv, DAdv, GDdiff it is possible to
further improve fairness in exchange for the heavily
deteriorated RC-AUC.

How Does Rejecting Predictions Affect Fair-
ness? Figures 4a and 4b depict the dependence
of fairness on the rejection rate, in presenting the
percentage of predictions that were replaced by
the ground-truth. This setting could be consid-
ered as an emulation of a human–machine system,
where most uncertain instances are processed by
humans. As expected, with a greater rejection rate,
fairness increases, because the overall performance
improves and the average performance gap reduces.
However, we note that these charts reveal a dis-
crepancy between the results of different debiasing

methods on different rejection rates. On Bios, we
see that GDdiff in the setting without rejection (0%
rejection rate) demonstrates a similar level of fair-
ness with other methods, but starting from 15%,
it falls well behind them and the standard model.
BTJ on the contrary, demonstrates slightly inferior
fairness at the beginning of the curve and starts
to outperform other debiasing methods after the
rejection rate exceeds 20%. Together with BTEO,
it achieves higher performance than other methods
on Moji along almost the whole range of rejection
rates.

4.2 Out-of-Distribution Detection

The detailed results for OOD detection on both
datasets are presented in Tables 19 and 20 in Ap-
pendix G. As expected, DDU substantially im-
proves the OOD detection performance compared
to SR in most cases. Figures 5a and 5b demonstrate
how the OOD detection performance changes af-
ter applying debiasing techniques compared to the
standard model. We see that some debiasing meth-
ods have a strong negative impact on OOD detec-
tion performance. For the SR baseline, applying
any debiasing technique on Moji results in substan-
tial performance losses, with the biggest drops of
around 15% points for INLP and FairBatch despite
the increase in accuracy (Figure 1b). On Bios, we
see a large decrease in OOD detection performance
for INLP and GDdiff.

At the same time, we see that the more advanced
DDU method is much less vulnerable to debias-
ing. On Moji, the performance drop can be seen
only for methods that modify the training loss func-
tion: Adv, DAdv, and GDdiff. Note also that for
Adv and DAdv the drop is slightly smaller than the
drop for SR. On Bios, a small drop can be seen
for FairBatch, while for other methods there is no
performance drop at all. Moreover, for BTJ, DAdv,
and BTEO there is a small improvement.

Overall, we can see that the combinations of
BTJ, BTEO, and INLP with DDU perform consis-
tently well on OOD detection across both datasets,
without any deterioration due to debiasing.

5 Related Work

Great interest in the problem of model fairness
within the NLP community in recent years has
spurred the development of numerous debiasing
techniques (Han et al., 2022a; Elazar and Goldberg,
2018; Shen et al., 2022; Ravfogel et al., 2020). In
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Figure 4: Dependence of fairness from a rejection rate with HUQ on the balanced test and validation sets.
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Figure 5: The ROC-AUC difference between debiased and standard models for OOD detection on various datasets
with imbalanced test and validation sets.

our study, we conduct experiments with state-of-
the-art methods selected across the methodological
spectrum. There is also ongoing research related to
analyzing debiasing methods under various condi-
tions, including different synthetic distributions of
protected attributes in the training set (Han et al.,
2022c). The approach used in this paper differs
from previous work since it analyzes performance,
fairness, and reliability over various distributions
of protected attributes in the test set, which has not
been done before.

NLP models have been increasingly deployed
in safety-critical applications in healthcare, fi-
nance, and legal domains. This has led to a no-
table research interest in UE. The most notable
UE techniques investigated in NLP are Monte
Carlo dropout (Malinin and Gales, 2021), training
loss regularization (Xin et al., 2021; Zhang et al.,
2019), and density-based methods (Liu et al., 2020;
Mukhoti et al., 2023; Podolskiy et al., 2021; Yoo
et al., 2022). We conduct experiments with recent

widely-used UE methods and also with a prominent
hybrid technique that mixes multiple uncertainty
scores.

The interference between debiasing and UE tech-
niques recently has been noted in adversarial attack
detection. Tran et al. (2022a) show that debiased
models are more vulnerable to attacks because debi-
asing reduces the distance to the classifier decision
boundary. Xu et al. (2021) also find that promot-
ing robustness using adversarial training tends to
introduce disparity of performance between differ-
ent protected groups. However, to our knowledge,
debiasing in conjunction with reliability tasks such
as selective classification and OOD detection has
not been investigated before.

6 Further Discussion and Conclusion

In this work, we have investigated the influence
of debiasing techniques on model reliability. We
discovered that debiasing can substantially reduce
the quality of selective classification, particularly



when the test set is imbalanced, i.e. it has a similar
biased distribution p(g|y) to the training set. The
worsening of selective classification performance
is more pronounced than in the case of accuracy.
Furthermore, we demonstrate that the decrease in
performance due to debiasing can be eliminated
(results on Bios) or even turned into improvements
(results on Moji) when evaluation is conducted on
the balanced test sets. The discrepancy in results
demonstrates the importance of conducting an eval-
uation of debiasing methods not only on various
training distributions but also on balanced and im-
balanced test distributions. Our experiments reveal
that the best trade-off between fairness and selec-
tive classification performance is achieved by meth-
ods based on instance reweighting: BTJ (Lahoti
et al., 2020) and BTEO (Han et al., 2022a).

We also found that rejecting predictions in selec-
tive classification can impact relative fairness be-
tween various methods and models. For example,
after a certain percentage of rejections, the fairness
of a debiased model may decrease even below the
fairness level of a standard model. This is similar to
increased accuracy disparities observed in a rejec-
tion scenario (Jones et al., 2021) but has not been
shown in a debiasing setup before. However, it is
worth noting that BTJ consistently demonstrates
robustly good fairness across all rejection rates.

Lastly, our experiments reveal that OOD detec-
tion is also vulnerable to debiasing when using the
baseline UE technique of softmax response. How-
ever, applying a more advanced approach such as
DDU alleviates this issue providing similar perfor-
mance with the standard model for most debiasing
methods. BTJ and BTEO combined with DDU also
demonstrate very robust performance in this sce-
nario. These combinations result in better fairness
with no penalties for OOD detection compared to
the standard model.

Overall, methods based on instance reweighting
emerge as the most favorable choices for simulta-
neously obtaining fairness, good performance, and
high reliability. Returning to the main research
question, when using the right combination of tech-
niques, it is possible to achieve both model fairness
and reliability.

7 Limitations

• We focused exclusively on equal opportunity
fairness in this paper, despite the myriad of
different definitions of fairness in the litera-

ture, such as demographic parity. Therefore,
in Appendix D, we provide a comprehensive
description of the calculation process for the
fairness metric. Although different fairness
criteria may yield slightly different results,
we hypothesize that these variations would
not significantly alter the relationship between
fairness and reliability. We leave further in-
vestigation of this matter to future research.

• We conducted experiments only on English.
However, all methods are language-agnostic
and are compatible with any transformer-
based model. We do not expect there to be ma-
jor deviations in results for other languages.

• We investigated group fairness under the as-
sumption that we have an access to protected
attributes, which is not always true for real-
world datasets. On the other hand, this is a
common assumption in work in the debiasing
literature.

8 Ethical Considerations

In this work, we consider the trade-off between
the performance, fairness, and reliability of a
model. We used only publicly-available models
and datasets, and only according to the intended
use; to avoid any harm to users, we used only at-
tributes that users have self-disclosed.
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A Acronyms

Acronym Full name Description

Debiasing methods

BTJ Balanced Training with Joint balance Balances the joint distribution of protected attributes and target
labels through instance reweighting

BTEO Balanced Training with Equal Opportunity Balances the protected attributes within “advantage” classes
through resampling instances based on equal opportunity ob-
jectives

Adv Adversarial Training Extends the training objective with a discriminator compo-
nent responsible for making the model unlearn the protected
attributes

DAdv Diverse Adversaries approach Similar to Adv, but add an ensemble of adversaries to the
loss and subjects them to a diversity constraint for learning
orthogonal hidden representations from one another

GDdiff Group Difference Adds a loss component that minimizes the loss gap across
protected groups within each class

FairBatch Fair Batch Selection Dynamically adjusts the probability of resampling instances in
each minibatch during training to achieve loss disparity across
protected groups

INLP Iterative Null-space Projection Removes protected information from an already trained model
by iteratively projecting its hidden representations to the null-
space of protected attribute discriminators, and after uses these
representations for classification

UE methods & UE scores

SR Softmax Response Uses maximum probability from the softmax layer as a confi-
dence score

MC Monte-Carlo dropout Makes N stochastic forward passes using dropout, obtained
predictions aggregated with various UE scores (e.g. BALD,
SMP, PV).

MD Mahalanobis Distance Estimates minimal class-conditional probability of an input
instance x that follows a Gaussian distribution. The uncer-
tainty score is computed as the Mahalanobis distance between
latent instance representations of x and the closest centroid of
a class.

DeepFool Deep Fool Computes the l2 norm of the minimum perturbation vector
that is required to apply to a latent representation to change
the prediction of a model. The smaller the norm, the higher
the uncertainty.

HUQ Hybrid Uncertainty Quantification Hybrid method, combining various UE methods. For more
details refer to Appendix H.

BALD Bayesian Active Learning with Disagreement 1
N

∑
c,n pcn log pcn −

∑N
n=1

1
N

∑
n pcn

1
N

∑
n log pcn, where

C = number of classes, N = number of stochastic passes, and
pcn = probability of class c during the stochastic pass n.

SMP Sampled Maximum Probability 1−maxc∈C

∑N
n=1 p

c
n

PV Probability Variance 1
C

∑C
c=1(

1
N

∑N
n=1(p

c
n − 1

N

∑
n log pcn)

2)

Table 1: Short-list of acronyms used in the paper.



Dataset Debiasing
Method

Num.
Epochs

Batch
Size

Learning
Rate

Weight
Decay

Debiasing
Parameter

Bios (imbalanced)

Standard 20 16 5e-6 0 -
BTEO 20 16 5e-6 0 -
Adv 20 16 5e-6 0 1.0
DAdv 20 16 5e-6 0 1.0/1.0
INLP 20 16 5e-6 0 True/False
FairBatch 20 16 5e-6 0 0.05
GDdiff 20 16 5e-6 0 0.5
BTJ 20 16 5e-6 0 -

Bios (balanced)

Standard 20 16 5e-6 0 -
BTEO 20 16 5e-6 0 -
Adv 20 16 5e-6 0 1.0
DAdv 20 16 5e-6 0 1.0/1.0
INLP 20 16 5e-6 0 False/True
FairBatch 20 16 5e-6 0 0.05
GDdiff 20 16 5e-6 0 0.5
BTJ 20 16 5e-6 0 -

Table 2: Optimal training hyperparameters for BERT on Bios with various debiasing methods. We use a grid search
with the following grid values: batch size: [16, 32], learning rate: [1e-6, 5e-6, 1e-5, 3e-5, 5e-5], weight decay: [0,
1e-4]. For all models, dropout rate is 0.1. The number of epochs is determined by early-stopping.

Dataset Debiasing
Method

Num.
Epochs

Batch
Size

Learning
Rate

Weight
Decay

Debiasing
Parameter

Moji (imbalanced)

Standard 20 32 1e-6 0 -
BTEO 20 32 1e-6 0 -
Adv 20 32 1e-6 0 1.0
DAdv 20 32 1e-6 0 1.0/1.0
INLP 20 32 1e-6 0 False/True
FairBatch 20 32 1e-6 0 0.5
GDdiff 20 32 1e-6 0 0.5
BTJ 20 32 1e-6 0 -

Moji (balanced)

Standard 20 32 1e-6 0 -
BTEO 20 32 1e-6 0 -
Adv 20 32 1e-6 0 1.0
DAdv 20 32 1e-6 0 1.0/1.0
INLP 20 32 1e-6 0 False/False
FairBatch 20 32 1e-6 0 0.5
GDdiff 20 32 1e-6 0 0.5
BTJ 20 32 1e-6 0 -

Table 3: Optimal training hyperparameters for BERTweet on Moji with various debiasing methods. We use a grid
search with the following grid values: batch size: [16, 32], learning rate: [1e-6, 5e-6, 1e-5, 3e-5, 5e-5], weight
decay: [0, 1e-4]. For all models, dropout rate is 0.1. The number of epochs is determined by early-stopping.

B Hyperparameters and Computational Resources

For hyperparameter optimization, we employed the standard grid-search with accuracy on the validation
set as an optimization target for the standard model and with DTO for the debiased models. The
grid and the best parameters are described in Tables 2 to 4. For each debiasing method we tuned
method-specific parameters, namely: adv_lambda for Adv, adv_lambda/adv_diverse_lambda for DAdv,
INLP_discriminator_reweighting/INLP_by_class for INLP, DyBTalpha for FairBatch and GDdiff. The
remaining parameters are given by default in the Fairlib framework (Han et al., 2022d).

All experiments were conducted on a cluster with Nvidia V100 GPUs. The total amount of GPU hours
and the number of model parameters are specified in Table 6.



Dataset Debiasing
Method

Num.
Epochs

Batch
Size

Learning
Rate

Dropout
Rate

Debiasing
Parameter

Moji (imbalanced)

Standard 100 512 1e-4 0 -
BTEO 100 512 1e-4 0 -
Adv 100 512 1e-4 0 1.0
DAdv 100 512 1e-4 0 1.0/1.0
INLP 100 512 1e-4 0 False/False
FairBatch 100 512 1e-4 0 0.1
GDdiff 100 512 1e-4 0 0.5
BTJ 100 512 1e-4 0 -

Moji (balanced)

Standard 100 128 3e-3 0.1 -
BTEO 100 128 3e-3 0.1 -
Adv 100 128 3e-3 0.1 10.0
DAdv 100 128 3e-3 0.1 1.0/1.0
INLP 100 128 3e-3 0.1 False/False
FairBatch 100 128 3e-3 0.1 0.1
GDdiff 100 128 3e-3 0.1 0.5
BTJ 100 128 3e-3 0.1 -

Table 4: Optimal training hyperparameters for MLP+DeepMoji on Moji with various debiasing methods. We use a
grid search with the following grid values: batch size: [64, 128, 256, 512, 1024], learning rate: [1e-2, 5e-3, 3e-3,
1e-3, 5e-4, 1e-4], dropout rate: [0.0, 0.1, 0.2, 0.3]. The number of epochs is determined by early-stopping.

Method Parameter Search Range

Adv adv_lambda [1e-4, 1e-3, 1e-2, 1e-1, 1, 1e2, 1e3]
DAdv adv_lambda/adv_diverse_lambda [1e-4, 1e-3, 1e-2, 1e-1, 1, 1e2, 1e3]
INLP INLP_discriminator_reweighting [True, False]
INLP INLP_by_class [True, False]
FairBatch DyBTalpha [1e-4, 1e-3, 1e-2, 5e-2, 1e-1, 5e-1, 1]
GDdiff DyBTalpha [1e-4, 1e-3, 1e-2, 5e-2, 1e-1, 5e-1, 1]

Table 5: The hyperparameter grid for debiasing methods. For DAdv we jointly tuned both parameters as in Han
et al. (2022d).

Dataset Model GPU hours Num. of
Params

Moji BERTweet 737 135m
Moji MLP 89 0.3m
Bios BERT 1134 110m

Table 6: Overall computation statistics. GPU hours specify the approximate number of GPU hours spent for training
and evaluating the corresponding model for all debiasing and UE methods on both imbalanced and balanced sets.
The column Num. of Params contains the number of parameters of a single model.



C Dataset Statistics and Test Set Distributions

In this section, we present the statistics of the datasets used in our experiments, including a joint probability
distribution of the target value and protected attribute: Tables 7 to 10. We note that in Moji, the original
distribution in test and validation is balanced, so we manipulated this distribution to create the “imbalanced”
version. In Bios, on the contrary, the test and validation follow the training distribution, so we modify
them to create the “balanced” version. Below, we provide a theoretical justification for performing such
manipulations of the test distributions. We also present statistics of datasets used as OOD domains in
Tables 11 and 12.

C.1 Theoretical Justification for Experimenting with Various Test Distributions
Consider a dataset consisting of n instances D = {(xi, yi, zi)}ni=1, where xi is an input vector to the
classifier, yi ∈ [0, 1] represents binary target class label, and zi ∈ [g,¬g] is the binary group label, such
as gender. nc,g denotes the number of instances in a subset with target label c and protected label g. A
vanilla model (m) makes prediction, ŷ = m(x).

When evaluating the accuracy of a model m,

Accuracy =
TP + TN

TP + TN + FP + FN
=

TPg + TP¬g + TNg + TN¬g

TP + TN + FP + FN
(1)

Since the denominator in Equation (1) is a constant number for a particular dataset (which is the total
number of instances in the test set), to simplify the analysis, we will focus on the numerator hereafter
TPg + TP¬g + TNg + TN¬g.

How does Equation (1) related to Equal Opportunity Fairness? Recall that equal opportunity fairness
is measured by the equality of true positive rate (TPR), e.g., the TPR gap, |TPRg − TPR¬g|, between two
demographic groups.

Let ∗ denote the results after bias mitigation, e.g. TP∗
g is the TP of group g after debiasing, and assuming

that bias mitigation w.r.t. equal opportunity fairness only changes the prediction w.r.t. positive instances,

Accuracy − Accuracy∗ =
1

TP + TN + FP + FN
(TPg + TP¬g − TP∗

g − TP∗
¬g) (2)

Moreover, by definition, TPR = TP
TP+FN , therefore, Equation (2) can be expressed based on TPR:

n(Accuracy − Accuracy∗) = (n1,gTPRg + n1,¬gTPR¬g − n1,gTPR∗
g − n1,¬gTPR∗

¬g) (3)

where, as introduced before, n = TP + TN + FP + FN, n1,g = TPg + FNg, and n1,¬g = TP¬g + FN¬g.
By grouping TPR by groups, we can see that

n(Accuracy − Accuracy∗) = n1,g(TPRg − TPR∗
g) + n1,¬g(TPR¬g − TPR∗

¬g) (4)

Let ∆g = TPRg − TPR∗
g and ∆¬g = TPR¬g − TPR∗

¬g denote the changes in TPR after debiasing
for group g and ¬g, respectively. Although debiasing may decrease the TPR of the majority group, a
good debiasing method should result in a larger increase in terms of the TPR of the minority group, i.e.,
∆g +∆¬g < 0. For example, the vanilla model achieves TPRg = 0.8 and TPR¬g = 0.2, and a debiased
model achieves TPR∗

g = 0.7 and TPR∗
¬g = 0.5. In this example,

∆g +∆¬g = 0.1 + (−0.3) = −0.2

How does the test set distribution affect the accuracy evaluation? If the test set is balanced (i.e.,
n1,g = n1,¬g = 1

2n1), Equation (4) can be simplified as:

Accuracy − Accuracy∗ =
n1

2n
(∆g +∆¬g),

showing that the debiased method could improve the accuracy score by −n1
2n(∆g +∆¬g).



Split Gender
Profession Attorney Dentist Journalist Nurse Photographer Physician Psychologist Surgeon Teacher Total

Train Female 6.44 2.52 5.06 8.88 4.60 8.38 5.81 0.97 5.03 47.68
Male 10.05 4.76 5.03 0.87 7.93 11.35 3.45 5.81 3.07 52.32
All 16.49 7.28 10.09 9.74 12.53 19.73 9.26 6.78 8.10 100.00

Val Female 6.86 3.27 5.42 8.65 4.99 8.16 6.34 0.83 5.26 49.79
Male 9.74 4.32 4.41 0.89 7.50 11.00 3.08 6.05 3.21 50.21
All 16.60 7.59 9.83 9.55 12.49 19.16 9.42 6.88 8.47 100.00

Test Female 5.84 2.63 4.76 8.61 4.00 14.76 5.44 1.19 4.75 51.97
Male 10.50 4.59 5.33 0.82 8.56 5.21 3.84 5.59 3.58 48.03
All 16.33 7.22 10.10 9.43 12.55 19.97 9.28 6.78 8.33 100.00

Table 7: Bios distribution (imbalanced test and validation sets) over target variable and protected attribute for all
subsets.

Split Gender
Profession Attorney Dentist Journalist Nurse Photographer Physician Psychologist Surgeon Teacher Total

Train Female 6.44 2.52 5.06 8.88 4.60 8.38 5.81 0.97 5.03 47.68
Male 10.05 4.76 5.03 0.87 7.93 11.35 3.45 5.81 3.07 52.32
All 16.49 7.28 10.09 9.74 12.53 19.73 9.26 6.78 8.10 100.00

Val Female 9.60 4.58 6.18 1.25 6.99 11.43 4.31 1.17 4.50 50.00
Male 9.60 4.58 6.18 1.25 6.99 11.43 4.31 1.17 4.50 50.00
All 19.21 9.16 12.35 2.50 13.97 22.85 8.62 2.33 8.99 100.00

Test Female 9.16 4.12 7.47 1.28 6.27 8.17 6.03 1.87 5.62 50.00
Male 9.16 4.12 7.47 1.28 6.27 8.17 6.03 1.87 5.62 50.00
All 18.31 8.24 14.94 2.57 12.54 16.35 12.06 3.74 11.24 100.00

Table 8: Bios distribution (balanced test and validation sets) over target variable and protected attribute for all
subsets.

Split Ethnicity
Sentiment score Sad Happy Total

Train SA 40.00 10.00 50.00
AA 10.00 40.00 50.00
All 50.00 50.00 100.00

Val SA 40.02 9.98 50.00
AA 9.98 40.02 50.00
All 50.00 50.00 100.00

Test SA 40.02 9.99 50.01
AA 9.99 40.00 49.99
All 50.01 49.99 100.00

Table 9: Moji distribution (imbalanced test and validation sets) over target variable and protected attribute for all
subsets.

On the other hand, if the test set is imbalanced, let’s explore the condition when debiasing does not
affect accuracy:

n1,g∆g + n1,¬g∆¬g = 0 ⇔
n1,g

n1,¬g
= −

∆¬g

∆g

In our previous example, where ∆g = 0.1 and ∆¬g = −0.3, the debiasing method does not affect
accuracy if n1,g

n1,¬g
= −−0.3

0.1 = 3.

In general, if there much more instances in group g than group ¬g for class 1 (i.e., n1,g
n1,¬g

> −∆¬g
∆g

),
debiasing would decrease accuracy.

C.2 Main Datasets with Balanced and Imbalanced Test Distributions



Split Ethnicity
Sentiment score Sad Happy Total

Train SA 40.00 10.00 50.00
AA 10.00 40.00 50.00
All 50.00 50.00 100.00

Val SA 25.00 25.00 50.00
AA 25.00 25.00 50.00
All 50.00 50.00 100.00

Test SA 25.01 25.01 50.01
AA 24.99 24.99 49.99
All 50.00 50.00 100.00

Table 10: Moji distribution (balanced test and validation sets) over the target variable and protected attribute for all
subsets.

Dataset Num. of
classes

Protected
attribute

Num. of
attributes Train/Val/Test

Moji (balanced) 2 Race 2 100k/8k/8k
Moji (imbalanced) 2 Race 2 100k/5k/5k
Bios (imbalanced) 9 Gender 2 64k/10k/25k
Bios (balanced) 9 Gender 2 64k/7k/16k

Table 11: Dataset statistics. This table presents overall dataset statistics with the number of samples for each split
and task-specific parameters, such as the number of classes and protected attributes. We keep only 9 prevalent
professions except “professor” since it already has a balanced distribution.

Dataset Num. of
classes Train/Test

IMDB (Maas et al., 2011) 2 20K/25K
20 News Groups (Lang, 1995) 20 11.3K/7.5K
TREC-10 (Li and Roth, 2002; Hovy et al., 2001) 6 5.5K/0.5K
SST-2 (Socher et al., 2013) 2 67.3K/0.9K
WMT-16 (Bojar et al., 2016) - 4500K/3K

Table 12: OoD dataset statistics. The table presents the number of samples for the training and test parts of the
datasets. For the SST-2 dataset, we used the available validation set as the test set. From these datasets, we use only
the entire test part as OoD instances.

C.3 Datasets Used as Out-of-distribution Domains



D Details of Fairness Metric Calculation

1. We calculate the true positive rate (TPR) for each of the protected groups in a dataset:

TPR =
TP

TP + FN
. (5)

2. We group-wise aggregate TPR gap according to the following formula:

βc =
∑
g

|TPRc,g − TPRc|. (6)

Here, TPRc stands for TPRc,g averaged across groups.
3. We aggregate acquired βc class-wise:

δ =

√
1

C

∑
c

β2
c . (7)

4. Finally, we subtract δ from 1 to align fairness with accuracy. Optionally, we multiply it by 100 for
easy comparison to other metrics:

Fairness = 100 · (1− δ). (8)

E Example of a Risk–Coverage Curve

Figure 6 presents the risk–coverage curve for the Bios dataset with the standard BERT model. In this
example, HUQ is used as an uncertainty estimation method for rejecting instances.
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Figure 6: The example of the RC curve for the Bios dataset with the standard model.



F Additional Experimental Results for Selective Classification

Method Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

- Fairness ↑ 90.5±0.5 93.4±0.8 92.9±0.4 92.7±0.4 90.9±0.5 91.8±0.6 92.6±0.4 91.0±0.4
- Accuracy ↑ 89.7±0.2 88.9±0.4 89.4±0.2 89.4±0.3 89.2±0.1 89.0±0.2 89.5±0.3 89.5±0.2
- DTO ↓ 14.0±0.2 13.0±0.3 12.8±0.3 12.8±0.4 14.1±0.2 13.8±0.3 12.8±0.4 13.8±0.3

MD RC-AUC ↓ 430.8±15.8 595.0±85.9 517.3±70.0 575.8±203.3 478.4±84.2 640.4±120.2 504.2±38.5 455.6±27.6
MC (SMP) RC-AUC ↓ 379.5±11.0 480.1±72.2 421.7±14.6 416.1±21.6 416.7±14.9 619.7±48.5 391.1±22.2 455.8±38.4
MC (PV) RC-AUC ↓ 379.0±17.6 469.0±60.2 438.3±4.0 438.9±35.7 427.6±8.2 545.1±60.2 404.5±24.9 451.2±22.7
MC (BALD) RC-AUC ↓ 373.7±15.4 469.7±62.9 444.6±16.0 460.0±73.7 420.1±7.6 567.3±88.6 416.3±27.7 437.0±24.6
HUQ (DeepFool + MD) RC-AUC ↓ 368.8±17.2 464.4±77.5 408.1±13.1 436.0±77.1 456.1±59.4 525.2±55.3 377.1±21.8 386.2±26.4
DeepFool RC-AUC ↓ 402.7±17.3 466.3±53.4 430.7±48.4 428.7±33.4 447.3±41.6 628.0±64.9 389.8±21.4 919.8±272.4
DDU RC-AUC ↓ 719.3±31.3 915.1±92.4 706.3±133.4 812.8±91.8 586.4±106.7 877.2±93.8 785.2±54.1 709.4±26.5

Baseline (SR) RC-AUC ↓ 429.1±18.9 509.5±66.3 478.0±54.3 463.3±50.9 527.9±76.0 738.4±54.9 419.6±26.8 587.7±66.6

Table 13: Performance of selective classification (RC-AUC) for various debiasing methods on Bios with imbalanced
test and validation sets (BERT model). The best results for each debiasing method are highlighted with bold font.

Method Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

- Fairness ↑ 90.5±0.5 93.4±1.1 92.8±0.6 93.1±0.6 90.5±0.9 93.0±1.3 92.5±0.6 90.7±0.5
- Accuracy ↑ 89.1±0.2 88.7±0.1 89.3±0.2 89.1±0.3 88.3±0.1 88.7±0.4 89.2±0.1 88.9±0.3
- DTO ↓ 14.5±0.4 13.2±0.6 12.9±0.3 12.9±0.5 15.1±0.6 13.4±0.7 13.1±0.4 14.5±0.2

MD RC-AUC ↓ 334.8±36.7 397.3±19.8 349.6±20.7 385.8±104.3 340.4±42.0 422.8±65.5 347.1±32.3 347.1±37.2
MC (SMP) RC-AUC ↓ 293.2±16.4 347.9±28.8 283.9±14.1 286.1±8.7 305.3±9.9 462.4±53.0 293.7±19.8 328.7±42.9
MC (PV) RC-AUC ↓ 290.3±16.9 337.8±26.4 288.8±8.8 301.4±16.6 316.6±7.6 378.7±35.4 299.1±16.7 327.8±36.8
MC (BALD) RC-AUC ↓ 287.6±21.7 338.0±33.7 291.8±7.4 312.9±36.8 310.5±8.0 390.2±46.9 302.9±14.8 319.3±35.7
HUQ (DeepFool + MD) RC-AUC ↓ 285.0±22.4 327.5±25.8 297.0±14.6 286.4±5.8 323.0±19.3 396.0±63.1 283.7±18.1 312.7±63.3
DeepFool RC-AUC ↓ 301.3±4.9 339.5±17.2 279.0±13.5 293.1±17.1 332.9±15.5 453.6±43.4 290.1±12.0 489.4±137.2
DDU RC-AUC ↓ 497.8±33.5 557.4±40.2 478.0±23.5 500.6±44.5 405.5±59.0 557.1±54.0 516.7±40.3 487.0±29.9

Baseline (SR) RC-AUC ↓ 326.2±14.3 369.3±21.9 309.3±20.6 312.3±15.0 362.2±32.8 519.6±37.1 310.8±15.9 452.2±123.8

Table 14: Performance of selective classification (RC-AUC) for various debiasing methods on Bios with balanced
test and validation sets (BERT model). The best results for each debiasing method are highlighted with bold font.

Method Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

- Fairness ↑ 61.5±0.4 76.7±0.7 86.4±1.4 85.1±0.6 85.2±1.4 91.0±1.1 85.2±0.4 62.2±0.6
- Accuracy ↑ 82.9±0.1 79.5±0.6 77.8±1.6 78.6±0.2 78.6±0.5 76.1±0.5 78.5±0.1 82.3±0.8
- DTO ↓ 42.1±0.3 31.1±0.4 26.1±0.8 26.1±0.3 26.0±0.5 25.5±0.3 26.1±0.3 41.8±0.3

MD RC-AUC ↓ 874.4±7.8 1052.4±21.1 1177.7±47.2 1157.0±14.3 1095.1±24.1 1239.4±34.7 1118.7±15.9 950.6±70.9
MC (SMP) RC-AUC ↓ 344.6±2.3 457.8±21.6 580.7±78.7 530.3±8.3 537.4±27.8 669.1±24.8 529.2±5.9 358.7±28.1
MC (PV) RC-AUC ↓ 408.5±6.8 570.8±48.6 662.8±196.6 560.5±10.9 634.3±19.9 1226.6±81.6 688.6±29.8 458.6±53.5
MC (BALD) RC-AUC ↓ 779.9±39.4 969.8±165.1 775.7±323.5 615.4±24.9 952.6±88.7 1559.3±44.6 1191.7±69.9 846.2±49.8
HUQ (SR + MD) RC-AUC ↓ 342.3±2.4 452.8±20.8 578.5±74.4 530.5±8.1 535.8±27.4 668.9±24.8 529.2±5.9 357.2±27.4
DeepFool RC-AUC ↓ 344.6±2.1 457.8±21.6 580.5±78.8 530.6±8.0 537.3±27.9 668.9±24.8 529.2±5.9 757.6±97.6
DDU RC-AUC ↓ 818.2±6.8 986.8±20.2 1077.2±50.6 1048.9±9.6 1024.9±22.9 1152.0±29.9 1044.8±11.7 867.6±61.8

Baseline (SR) RC-AUC ↓ 344.6±2.1 457.8±21.6 580.5±78.8 530.6±8.0 537.3±27.9 668.9±24.8 529.2±5.9 358.1±27.6

Table 15: Performance of selective classification for various debiasing methods on Moji with the imbalanced test
and validation sets (DeepMoji+MLP model). The best results for each debiasing method are highlighted with bold
font.



Method Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

- Fairness ↑ 61.4±2.0 83.2±5.8 89.8±1.0 89.9±1.1 91.1±1.0 90.8±1.0 89.6±1.9 86.6±5.2
- Accuracy ↑ 71.4±0.7 71.4±1.8 73.4±0.7 74.9±0.7 74.0±1.0 74.2±0.9 75.1±0.6 68.4±3.2
- DTO ↓ 48.0±2.0 33.6±1.5 28.5±0.7 27.1±0.4 27.5±0.6 27.4±0.7 27.1±0.7 34.6±3.6

MD RC-AUC ↓ 2086.3±212.7 2115.1±126.9 2151.5±145.2 2190.7±213.9 2325.3±147.2 2537.9±145.8 1869.7±313.8 2314.5±361.5
MC (SMP) RC-AUC ↓ 1358.9±50.4 1327.4±77.6 1252.8±117.4 1088.7±31.3 1127.5±69.8 1158.2±140.9 1049.3±41.0 1814.7±464.8
MC (PV) RC-AUC ↓ 1504.2±77.6 1397.7±131.1 1662.5±243.2 1256.8±104.5 1216.5±79.6 1902.0±124.3 1128.2±54.9 1901.9±461.5
MC (BALD) RC-AUC ↓ 1697.8±127.9 1499.2±218.0 1756.1±212.5 1476.8±169.1 1364.8±100.2 2171.6±82.9 1249.6±123.4 2013.5±471.9
HUQ (SR + MD) RC-AUC ↓ 1360.6±50.2 1325.9±78.1 1236.5±132.3 1086.5±35.1 1125.3±68.9 1158.9±144.4 1049.0±41.2 1719.0±434.9
DeepFool RC-AUC ↓ 1360.6±50.2 1326.1±78.2 1255.6±118.7 1089.1±32.8 1128.7±69.3 1159.5±143.8 1049.2±41.6 2555.2±353.1
DDU RC-AUC ↓ 1997.2±167.6 1860.2±110.6 2083.7±385.3 2079.0±199.6 2231.2±167.4 2430.6±157.5 1800.6±343.9 2247.3±275.0

Baseline (SR) RC-AUC ↓ 1360.6±50.2 1326.1±78.2 1255.8±118.8 1089.1±32.8 1128.7±69.3 1159.5±143.8 1049.2±41.6 1823.3±468.2

Table 16: Performance of selective classification for various debiasing methods on Moji with the balanced test set
(DeepMoji+MLP model). The best results for each debiasing method are highlighted with bold font.
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Figure 7: Trade-off between RC-AUC of selective classification with HUQ and fairness (left) and between accuracy
and fairness (right) on Moji with the imbalanced test set with MLP model. The fairness scores are presented
alongside each method for better comparison.
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Figure 8: Trade-off between RC-AUC of selective classification with HUQ and fairness (left) and between accuracy
and fairness (right) on Moji with the balanced test set with MLP model. We removed results for INLP from this
figure due to the high RC-AUC value for this debiasing method. The fairness scores are presented alongside each
method for better comparison.



Method Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

- Fairness ↑ 62.8±0.8 86.0±0.9 87.4±0.7 87.1±0.5 81.4±12.8 84.6±1.6 86.1±0.7 74.3±12.8
- Accuracy ↑ 82.5±0.3 78.6±0.7 77.9±1.0 78.3±0.8 75.6±5.2 78.5±0.6 79.0±0.6 72.6±11.1
- DTO ↓ 41.2±0.7 25.6±0.3 25.5±1.0 25.3±0.8 32.3±7.8 26.5±0.8 25.2±0.3 40.3±3.4

MD RC-AUC ↓ 530.0±44.6 842.8±48.4 777.1±23.5 762.0±18.0 993.2±290.0 824.6±67.6 751.8±49.1 1010.3±649.8
MC (SMP) RC-AUC ↓ 377.9±10.8 524.3±23.8 631.0±41.1 624.3±19.9 758.7±295.6 568.8±21.6 488.1±8.6 1189.5±860.1
MC (PV) RC-AUC ↓ 410.0±21.8 582.5±32.5 637.4±45.5 621.9±24.7 958.4±308.8 794.4±123.4 521.6±11.2 1428.4±883.0
MC (BALD) RC-AUC ↓ 447.7±31.0 631.7±34.9 655.8±47.8 638.7±28.4 1078.1±315.2 847.2±119.5 558.9±14.2 1517.1±814.3
HUQ (SR + MD) RC-AUC ↓ 392.1±11.3 532.0±25.4 660.3±49.3 646.0±22.5 681.7±218.9 560.3±20.2 502.6±10.7 877.4±682.5
DeepFool RC-AUC ↓ 392.6±11.9 532.6±24.7 682.3±50.2 664.3±22.5 703.7±240.4 586.2±18.8 503.1±10.9 1455.6±906.5
DDU RC-AUC ↓ 521.2±59.1 811.9±39.9 723.6±26.4 710.8±20.5 992.8±300.5 775.9±76.4 716.1±63.7 841.2±429.9

Baseline (SR) RC-AUC ↓ 392.7±11.5 532.4±25.2 681.5±49.3 664.6±22.6 702.5±246.5 585.9±19.0 502.9±10.8 1086.6±882.9

Table 17: Performance of selective classification for various debiasing methods on Moji with the imbalanced test
set (BERTweet model). The best results for each debiasing method are highlighted with bold font.

Method Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

- Fairness ↑ 64.5±0.7 86.7±0.7 87.0±0.5 87.3±1.6 85.2±6.5 84.8±1.1 86.1±0.4 78.4±13.3
- Accuracy ↑ 72.5±0.4 76.4±0.6 76.3±0.6 76.3±1.1 72.9±2.6 76.9±0.2 76.3±0.7 64.3±8.9
- DTO ↓ 44.9±0.8 27.1±0.3 27.0±0.6 27.0±0.5 31.2±5.1 27.7±0.4 27.5±0.4 44.0±3.6

MD RC-AUC ↓ 1709.0±117.3 1535.9±75.7 1342.2±53.1 1327.0±65.0 1850.9±284.2 1471.8±101.0 1429.5±41.4 2333.3±720.9
MC (SMP) RC-AUC ↓ 1294.6±25.4 935.5±35.1 1077.4±40.7 1157.4±158.1 1391.9±355.8 1034.9±10.5 918.7±26.9 2488.7±1066.2
MC (PV) RC-AUC ↓ 1440.3±58.4 1077.8±35.7 1113.8±53.1 1239.2±191.9 1715.4±185.1 1448.2±205.9 1021.3±22.3 2977.7±1346.9
MC (BALD) RC-AUC ↓ 1565.5±82.4 1187.7±37.7 1152.2±57.8 1276.7±182.0 1921.6±203.1 1526.9±181.3 1111.0±21.2 3082.1±1253.9
HUQ (SR + MD) RC-AUC ↓ 1299.7±22.5 954.2±37.8 1100.2±48.5 1154.0±115.4 1290.9±315.5 1023.0±27.0 953.8±34.6 2096.0±884.9
DeepFool RC-AUC ↓ 1299.3±22.7 954.5±37.6 1109.4±48.9 1157.7±109.2 1334.7±329.1 1045.7±14.8 954.2±35.1 3323.6±1923.2
DDU RC-AUC ↓ 1709.7±179.9 1541.7±106.2 1266.5±50.7 1271.3±69.4 1913.1±337.7 1455.0±113.3 1379.6±33.4 2158.5±593.6

Baseline (SR) RC-AUC ↓ 1299.7±22.5 954.2±37.8 1108.4±49.8 1160.2±115.5 1339.0±331.7 1045.6±14.8 953.8±34.6 2430.2±1184.2

Table 18: Performance of selective classification for various debiasing methods on Moji with the balanced test set
(BERTweet model). The best results for each debiasing method are highlighted with bold font.



G Additional Experimental Results for Out-of-distribution Detection

Method Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP Mean ∆

- Fairness ↑ 64.5±0.7 86.7±0.7 87.0±0.5 87.3±1.6 85.2±6.5 84.8±1.1 86.1±0.4 78.4±13.3 20.6±3.7
- Accuracy ↑ 72.5±0.4 76.4±0.6 76.3±0.6 76.3±1.1 72.9±2.6 76.9±0.2 76.3±0.7 64.3±8.9 1.7±2.2
- DTO ↓ 44.9±0.8 27.1±0.3 27.0±0.6 27.0±0.5 31.2±5.1 27.7±0.4 27.5±0.4 44.0±3.6 -14.7±1.9

DDU ROC-AUC ↑ 95.4±1.7 95.4±2.4 92.4±2.2 90.0±4.0 93.0±6.0 85.3±5.0 95.9±2.2 95.5±1.7 -2.9±3.8
MD ROC-AUC ↑ 95.7±1.7 95.3±2.3 92.7±2.3 90.3±4.1 92.5±6.2 84.1±5.4 96.1±2.2 95.9±1.7 -3.3±3.9

SR ROC-AUC ↑ 76.6±2.9 69.3±4.2 70.4±3.9 68.9±7.0 60.9±16.1 74.0±3.2 67.7±3.5 59.8±16.4 -9.3±8.5

Table 19: Performance of OoD detection for various debiasing and UE methods over the Moji dataset with the
balanced test set (BERTweet model). The best results for each debiased model are highlighted in bold.

Method Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP Mean ∆

- Fairness ↑ 90.5±0.5 93.4±1.1 92.8±0.6 93.1±0.6 90.5±0.9 93.0±1.3 92.5±0.6 90.7±0.5 1.8±1.0
- Accuracy ↑ 89.1±0.2 88.7±0.1 89.3±0.2 89.1±0.3 88.3±0.1 88.7±0.4 89.2±0.1 88.9±0.3 -0.2±0.3
- DTO ↓ 14.5±0.4 13.2±0.6 12.9±0.3 12.9±0.5 15.1±0.6 13.4±0.7 13.1±0.4 14.5±0.2 -0.9±0.6

DDU ROC-AUC ↑ 93.8±1.6 94.9±1.8 94.2±1.1 94.8±0.9 92.6±0.8 93.8±1.4 95.5±1.4 93.8±1.6 0.4±2.1
MD ROC-AUC ↑ 93.5±1.5 94.6±2.1 93.6±1.4 94.3±1.3 91.9±1.0 93.8±1.6 95.6±1.4 93.6±1.5 0.4±2.1

SR ROC-AUC ↑ 91.6±1.1 91.2±1.8 92.1±0.9 91.9±1.2 91.6±1.2 87.7±2.0 92.0±1.1 89.8±1.7 -0.7±1.8

Table 20: Performance of OoD detection for various debiasing and UE methods over the Bios dataset with the
balanced test set (BERT model). The best results for each debiased model are highlighted in bold.

H Details of the Hybrid Uncertainty Quantification Method

We combine aleatoric and epistemic uncertainty in a single score, which we call Hybrid Uncertainty
Quantification (HUQ). Consider we have a training dataset D. We define DID = {x ∈ D : UE(x) ≤
δmin} as in-distribution instances from D; XID = {x : UE(x) ≤ δmin} as arbitrary in-distribution
instances; XIDA = {x∈ XID : UA(x) > δmax} as ambiguous in-distribution instances (instances that
lie on the discriminative border of the trained classifier). Here, δmin, δmax are thresholds selected
on the validation dataset. Consider we are given measures of aleatoric UA(x) and epistemic UE(x)
uncertainty. To make different UE scores comparable, we define a ranking function R(u,D) as a rank
of u over a sorted dataset D, where u1 > u2 implies R(u1,D) > R(u2,D). For a given measure
of aleatoric and epistemic uncertainty, we compute total uncertainty UT(x) as a linear combination
UT(x) =(1− α)R(UE(x),D) + αR(UA(x),D), where α is a hyperparameter selected on the validation
dataset. Finally, we define HUQ as follows:

UHUQ(x) =


R(UA(x),DID),∀x ∈ XID \ XAID,

R(UA(x),D), ∀x ∈ XAID,

UT(x),∀x /∈ XID.



I Disaggregated Experimental Results

Group Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

SAE TPR 76.8±0.2 74.2±1.1 79.9±0.7 79.9±0.2 80.6±0.2 78.2±0.5 81.0±0.3 75.9±1.9
AAE TPR 66.7±0.2 70.8±0.3 70.1±1.0 70.4±0.2 70.3±0.5 70.9±0.5 70.1±0.3 66.8±0.5
SAE Sad TPR 89.3±0.2 92.6±0.8 78.6±0.5 79.4±0.9 81.6±0.9 75.5±2.8 80.2±0.8 89.2±1.1
AAE Sad TPR 42.1±0.4 66.2±2.4 59.5±2.0 58.4±0.6 60.7±1.7 63.1±4.1 59.4±0.6 43.5±3.3
SAE Happy TPR 64.2±0.3 55.9±2.9 81.3±1.5 80.4±1.2 79.7±1.2 80.8±2.9 81.8±0.8 62.5±4.9
AAE Happy TPR 91.3±0.2 75.5±2.2 80.7±3.9 82.3±0.4 79.8±1.5 78.8±3.3 80.8±0.7 90.0±2.4

Table 21: Disaggregated TPR values for various debiasing methods on Moji with the imbalanced test and validation
sets (DeepMoji+MLP model).

Group Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

SAE TPR 75.5±1.7 73.1±1.5 78.2±1.0 78.8±1.0 78.0±1.1 77.8±1.3 79.4±0.6 72.5±2.7
AAE TPR 67.2±0.9 69.8±2.5 68.7±0.9 70.9±0.5 69.9±0.8 70.6±0.5 70.8±0.8 64.2±4.3
SAE Sad TPR 89.7±2.4 92.6±1.5 77.5±9.1 77.4±7.1 73.9±1.9 70.6±6.0 81.3±4.1 77.2±10.6
AAE Sad TPR 43.9±2.8 73.5±7.0 66.7±10.1 63.2±6.3 64.9±3.8 57.7±5.5 67.3±6.3 59.1±14.6
SAE Happy TPR 61.3±5.8 53.6±4.4 78.8±8.2 80.3±6.3 82.1±2.1 84.9±4.5 77.4±5.2 67.9±7.6
AAE Happy TPR 90.6±1.2 66.1±11.7 70.7±11.4 78.7±5.7 75.0±5.0 83.6±5.0 74.2±6.8 69.3±8.0

Table 22: Disaggregated TPR values for various debiasing methods on Moji with the balanced test and validation
sets (DeepMoji+MLP model).

Group Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

SAE TPR 77.4±1.2 82.8±0.8 82.6±0.7 82.9±0.5 79.3±1.7 84.0±1.1 81.6±1.5 71.3±10.5
AAE TPR 66.2±0.6 70.4±0.4 70.7±1.0 70.9±0.8 68.2±3.0 69.7±0.7 71.0±0.4 60.5±5.3
SAE Sad TPR 92.5±0.8 85.1±1.9 85.1±2.2 84.5±1.4 80.6±9.7 83.7±1.7 89.2±0.8 84.0±6.8
AAE Sad TPR 45.8±1.6 66.3±3.1 69.1±2.6 68.0±1.9 63.3±14.8 64.0±3.2 69.7±1.7 50.7±13.3
SAE Happy TPR 62.3±3.0 80.6±3.3 80.1±3.4 81.4±2.0 78.0±8.4 84.4±3.5 74.0±3.8 58.6±17.1
AAE Happy TPR 86.6±0.7 74.5±3.7 72.3±3.3 73.8±3.0 73.0±9.6 75.3±2.6 72.4±1.7 70.3±22.3

Table 23: Disaggregated TPR values for various debiasing methods on Moji with the imbalanced test set (BERTweet
model).

Group Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

SAE TPR 77.4±0.8 82.2±0.8 82.3±0.5 82.3±1.7 78.0±1.9 83.9±0.7 81.6±1.0 68.8±10.8
AAE TPR 67.6±0.2 70.6±0.5 70.3±0.9 70.3±0.7 67.8±3.6 69.9±0.3 71.1±0.5 59.8±7.7
SAE Sad TPR 92.4±0.6 85.4±2.2 84.6±1.8 81.7±3.2 75.8±10.5 82.4±0.9 88.8±0.8 88.0±8.7
AAE Sad TPR 48.5±0.4 67.2±3.3 67.8±2.1 65.6±1.3 71.9±12.0 62.6±1.1 69.3±1.4 60.9±21.5
SAE Happy TPR 62.5±2.0 79.0±3.7 80.1±2.5 82.8±0.8 80.1±10.3 85.3±1.2 74.3±2.8 49.6±25.5
AAE Happy TPR 86.8±0.4 74.0±4.1 72.8±2.9 75.0±1.8 63.6±18.9 77.2±0.9 72.8±2.2 58.8±33.6

Table 24: Disaggregated TPR values for various debiasing methods on Moji with the balanced test set (BERTweet
model).



Group Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

Male TPR 86.1±0.4 85.6±0.7 86.4±0.3 86.4±0.5 85.5±0.1 85.4±0.4 86.7±0.7 86.0±0.4
Female TPR 86.3±0.2 85.7±0.5 86.5±0.2 86.5±0.4 86.0±0.2 85.4±0.4 86.6±0.4 86.3±0.3
Male teacher TPR 93.6±0.4 93.2±0.4 93.2±0.4 93.7±0.9 92.9±0.2 93.8±0.3 92.8±0.8 93.4±0.3
Female teacher TPR 92.8±0.7 92.8±0.5 93.1±0.2 93.5±0.7 92.2±0.5 93.4±0.5 92.9±0.8 92.9±0.1
Male attorney TPR 94.5±0.4 94.2±0.6 94.6±0.3 95.0±0.2 93.8±0.6 95.1±0.3 94.1±1.7 94.3±0.5
Female attorney TPR 97.7±0.2 97.2±0.3 97.7±0.2 97.7±0.1 97.2±0.5 97.8±0.2 97.2±1.0 97.7±0.3
Male photographer TPR 88.0±1.5 89.2±1.3 89.0±1.7 87.6±2.8 86.6±1.3 88.4±2.7 89.3±0.7 87.2±0.9
Female photographer TPR 88.7±1.0 89.5±1.5 90.1±1.8 88.6±2.3 87.8±1.2 88.3±3.2 89.7±0.8 87.7±0.5
Male psychologist TPR 74.5±1.1 77.0±1.3 78.3±1.9 78.3±2.0 75.0±0.5 74.5±1.4 78.9±3.4 75.7±2.0
Female psychologist TPR 88.3±1.1 83.2±1.8 84.4±1.6 85.1±1.8 88.1±0.9 83.8±1.0 84.7±0.3 88.5±2.1
Male physician TPR 94.2±0.7 94.0±0.4 94.4±0.4 93.6±0.3 94.3±0.4 94.6±0.8 94.2±0.9 94.2±0.5
Female physician TPR 91.7±0.8 93.3±0.6 92.9±0.6 92.5±0.7 91.9±0.7 92.8±1.3 93.2±0.5 91.6±0.6
Male surgeon TPR 91.7±1.1 91.0±1.3 89.8±1.2 90.2±0.6 91.3±0.3 91.9±1.2 90.1±1.4 91.9±0.9
Female surgeon TPR 98.0±0.2 98.3±0.2 98.2±0.1 98.1±0.2 98.1±0.1 98.4±0.2 98.1±0.2 98.0±0.3
Male journalist TPR 86.9±0.7 86.9±2.2 87.0±2.3 86.8±1.6 84.7±0.4 87.7±1.5 86.9±1.2 86.6±0.6
Female journalist TPR 86.9±1.5 86.3±1.7 86.5±2.3 86.6±2.3 85.8±0.8 87.0±1.3 86.6±1.4 86.7±0.9
Male dentist TPR 77.0±2.2 71.0±5.1 75.9±1.9 76.0±1.8 76.7±1.4 70.1±1.8 77.0±1.3 77.1±1.6
Female dentist TPR 53.8±0.9 54.2±3.3 58.0±1.9 57.3±2.0 54.5±2.1 49.1±1.7 58.0±2.1 55.1±0.6
Male nurse TPR 74.4±1.5 74.1±2.2 75.5±2.2 76.6±3.7 74.3±0.7 72.8±3.5 76.6±2.0 73.9±2.0
Female nurse TPR 78.4±1.5 76.3±1.5 77.5±1.7 78.9±2.5 77.9±0.8 77.6±3.2 79.4±1.8 78.1±1.1

Table 25: Disaggregated TPR values for various debiasing methods on Bios with imbalanced test and validation
sets (BERT model).

Group Metric Standard BTEO Adv DAdv FairBatch GDdiff BTJ INLP

Male TPR 86.0±0.3 85.4±0.5 86.4±0.5 86.4±0.6 85.5±0.3 84.6±1.2 86.8±0.4 85.9±0.3
Female TPR 86.1±0.2 85.3±0.3 86.2±0.2 86.1±0.5 85.6±0.2 84.6±0.9 86.6±0.4 86.2±0.3
Male teacher TPR 94.5±0.3 93.5±1.4 94.1±0.3 93.9±0.9 93.5±0.4 94.8±0.2 93.2±0.9 94.4±0.3
Female teacher TPR 92.9±0.8 92.5±1.5 93.3±0.3 93.2±0.8 92.1±0.5 93.6±0.4 92.4±1.0 92.8±0.4
Male attorney TPR 94.0±0.6 93.6±0.4 93.7±0.4 94.2±0.3 92.6±0.6 94.2±0.4 93.6±0.8 93.9±0.6
Female attorney TPR 97.7±0.3 97.2±0.3 97.7±0.2 97.6±0.3 97.2±0.3 97.6±0.3 97.4±0.4 97.9±0.3
Male photographer TPR 87.7±1.4 90.2±1.2 89.2±2.4 88.8±3.7 86.4±0.9 89.6±1.6 89.9±0.8 87.8±0.9
Female photographer TPR 88.9±1.1 90.0±1.4 89.9±1.8 89.4±2.9 87.7±0.9 89.5±1.5 90.3±1.1 88.6±1.5
Male psychologist TPR 73.7±1.4 76.2±1.3 76.6±0.9 78.4±1.9 74.5±0.2 74.0±1.8 79.1±4.0 74.2±1.0
Female psychologist TPR 86.2±2.8 82.2±0.8 82.5±1.2 83.8±2.2 87.7±1.0 82.1±1.8 83.7±2.0 87.4±1.9
Male physician TPR 95.3±1.0 94.2±1.1 94.9±0.6 94.0±0.4 94.9±0.2 95.4±0.9 94.5±0.9 94.8±0.4
Female physician TPR 93.0±1.4 93.1±1.2 93.1±0.8 92.4±0.7 92.1±0.7 93.8±1.7 93.4±0.7 92.1±0.9
Male surgeon TPR 91.9±0.6 91.0±1.4 90.3±0.5 90.6±1.2 91.5±0.6 92.1±1.3 89.2±0.8 91.9±0.4
Female surgeon TPR 98.2±0.1 98.3±0.3 98.2±0.1 97.9±0.4 97.8±0.3 98.4±0.3 97.9±0.1 98.2±0.2
Male journalist TPR 86.7±0.5 85.9±1.9 87.2±2.0 86.6±1.8 84.6±0.7 87.7±2.4 86.9±1.4 85.9±0.7
Female journalist TPR 85.6±1.9 84.5±1.7 85.8±1.7 85.0±2.2 84.6±1.9 86.5±1.9 86.0±1.3 85.0±1.1
Male dentist TPR 76.6±2.1 70.0±5.8 74.7±3.3 74.5±4.5 77.0±2.9 62.9±8.7 78.1±1.7 76.5±1.0
Female dentist TPR 53.0±1.1 53.3±2.6 56.3±1.4 56.6±3.4 53.7±2.1 45.5±6.2 58.8±1.9 54.1±1.5
Male nurse TPR 73.6±2.4 74.0±2.7 76.4±1.8 76.9±3.5 74.2±1.0 70.9±2.9 76.4±1.2 73.9±1.7
Female nurse TPR 79.0±2.5 76.8±2.2 79.4±2.0 79.2±2.5 77.8±1.1 74.8±3.1 79.1±0.8 79.3±1.7

Table 26: Disaggregated TPR values for various debiasing methods on Bios with balanced test and validation sets
(BERT model).


