
Spelling correction with word and
character n-gram embeddings

Simon Šuster
(joint work with Pieter Fivez and Walter Daelemans)

Computational Linguistics and Psycholinguistics
Research Center, University of Antwerp

Subtasks in spelling correction
1. Detection of misspellings

2. Generation of replacement candidates

3. Ranking of candidates

2

1. Detection of misspellings
● Non-word misspellings

○ Not a valid word of language vocabulary, e.g. “unchainged”
○ Use a vocabulary
○ Any out-of-vocabulary (OOV) word is marked as a misspelling

● Real-word misspellings
○ A valid word of the language, but not in the context:

“[too] play a game”
○ Can’t rely on a vocabulary
○ Every word is a potential misspelling

3

Create a set of orthographically or phonetically close words

● Edit-distance measures
○ Operations: insertion, deletion, substitution
○ Allow candidates to be removed from the misspelling for a certain

number of operations

4

2. Generation of replacement candidates

 unchainged

unchanged uncharged

substitute “n”→“r”
delete “i”

● Can use surface forms or convert to a phonetic approximation:
○ “unchainged” → ANXNJT

“unchanged”,
“uncharged”,
“unhinged”,
“enchained”,
“unchained”

“unchained”,
“enchained”,
“unchanged”,
“unhinged”,
“uncharged”

Pick the top-ranked word based on a scoring function

5

3. Ranking of candidates

“remain [unchainged]”

rank

Context-insensitive scoring
Assign the same correction regardless of the context:

● “Interest rates remain [unchainged]” → “unchanged”
● “[unchainged] melody” → “unchanged”

Typically based on an estimate of

● likelihood of character insertion, deletion and replacement operations
● prior unigram probability of the correct word

6

Context-sensitive scoring
A context-sensitive model:

● “Interest rates remain [unchainged]” → “unchanged”
● “[unchainged] melody” → “unchained”

Prior: 2-gram, 3-gram, … (word sequence) probabilities

● Works well when n is high (e.g. 5)
● Estimates must be obtained from very large corpora

7

Noisy channel
● The scoring functions are examples of a noisy channel model
● Bayesian inference: see an observation (misspelling), find the word

that generated it (correct)
● p(correct | misspelling) = p(misspelling | correct) * p(correct)

8

likelihood prior

● A popular model in spelling correction

Embeddings for spelling corrections
Spelling correction without the noisy-channel model

Context sensitivity without estimating the prior using longer n-grams

9

sum into w⇀

w-3 w-2 w-1 wmisspelled w+1 w+2 w+3

candi → candi
…
cand2 → cand2
cand1 → cand1

⇀

⇀

⇀
scorei = cosine(w, candi)⇀

Candidate scoring with vector semantics

Good for semantic compatibility,
but ignores whether wmisspelled

and candi are orthographically or
phonetically similar

10

⇀

scorei = cosine(w, candi) * weight

Candidate scoring with vector semantics

Solution: weight with
Damerau-Levenshtein distance,
Metaphone, or their combination

11

⇀⇀

sum into w⇀

w-3 w-2 w-1 wmisspelled w+1 w+2 w+3

candi → candi
…
cand2 → cand2
cand1 → cand1

⇀

⇀

⇀

Parameters

scorei = cosine(w, candi) * weight

window size

composition operation
weight words differently

weighting function

12

⇀⇀

sum into w⇀

w-3 w-2 w-1 wmisspelled w+1 w+2 w+3

candi → candi
…
cand2 → cand2
cand1 → cand1

⇀

⇀

⇀

Experiments (Fivez et al., 2017)
Applied in the clinical domain for English and Dutch

● Electronic health records (Antwerp University Hospital)
● Intensive care notes (Beth Israel Hospital)

● Model development on synthetic data
● Testing on human annotations (900 for EN, 500 for NL)

○ 88–90% accuracy

13

“sclerosin” → “sclerosing”
“sympots” → “symptoms”
“phebilitis” → “phlebitis”

“letels” → “letsels”
“wijnig” → “weinig”
“verminderderde” → “verminderde”

Example of context sensitivity

“new central line lower
extremity bypass with sob

now [goint] to be
intubated”

14

Challenge
For our method to work well, we need:

● embedding for each candidate
○ but candidate may not be in the embedding vocabulary

● embedding for each context word
● embedding for the misspelling

How to represent OOV words with embeddings?

How to represent rare words with embeddings?
15

Representing rare and OOV words
(assuming increasing the corpus size is not possible)

● assign a random vector (Dhingra et al., 2017)
● bin all rare words into a new “UNK” word type
● encode word definitions with an external resource (Long et al., 2016)
● train at morpheme level (Luong et al., 2013)
● train at the character n-gram level (Bojanowski et al., 2017)

○ nearest neighbors will also be more orthographically similar (character
n-gram overlap)

16

Learning of word embeddings
Achieving semantic similarity
(Mikolov et al., 2013; aka word2vec)

● adjust weights of a classifier to best predict adjacent words
○ want w・context to be high
○ want w・negative to be low

● weights are embeddings
● 1 word = 1 embedding
● no knowledge of the internal word structure

⇀ ⇀

⇀ ⇀

17

● Instead of word-only units:
○ add character n-grams of varying

lengths
○ mark the beginning (“<”) and end (“>”)

of words “where”

where,
<wh,
her,
ere,
re>,

<whe,
wher,
here,
ere>

18

Achieving both semantic and spelling similarity
(Bojanowski et al., 2017; aka fasttext)

Learning of character n-gram embeddings

Learning of character n-gram embeddings

● Training objective is the sum of dot
products between the target and the
character n-grams

● At test time, the embedding is also
obtained by summing

“where”

where,
<wh,
her,
ere,
re>,

<whe,
wher,
here,
ere>

19

Achieving both semantic and spelling similarity
(Bojanowski et al., 2017; aka fasttext)

Works especially well for languages
● with rich morphology (e.g. Slavic languages)
● rich with compound words (e.g. Dutch)

Nearest neighbors:
“delam” (EN: “to work”, 1st person sg.)

oddelam 0.651
predelam 0.640
opravljam 0.617
delajva 0.606
ustvarjam 0.600
obdelam 0.595
delajta 0.592
izdelam 0.591
delujem 0.589
delaš 0.586

“to finish working”
“to remake, to recycle”
“to be doing (a job)”
“to work”
“to create”
“to process, to work on”
“to work”
“to create”
“to be active as”
“to work”

1. pers. sg.
1. pers. sg.

1. pers. dual, imperative

1. pers. sg.
2. pers. dual, imperative
1. pers. sg.

2. pers. sg.
Source model: http://github.com/facebookresearch/fastText 20

Nearest neighbors for a rare word:
“relmuis” (EN: “edible dormouse”)
word2vec fasttext
kafferbuffel 0.972
pimpelmees 0.971
"Atheris 0.971
"Protostega" 0.971
"Conger 0.970
impala 0.970
waterbok 0.970
Laat-Siluur 0.969
driedoornige 0.969
haringhaai 0.969

woelmuis 0.945
hazelmuis 0.938
eikelmuis 0.927
huppelmuis 0.918
bosmuis 0.913
buideleikelmuis 0.911
veeltepelmuis 0.908
stekelmuis 0.905
bosspitsmuis 0.900
bosvleermuis 0.892

Source corpus: wiki-nl, 230M tokens 21

“bosbees” (EN: ~”berry”)
The fasttext model does not really understand morphology (of course):

22

bosbeek 0.679
bosbeekjes 0.657
bosbesbij 0.627
bosbesuil 0.602
bosberg 0.596
bosbeekjuffers 0.588
bosbeschermer 0.579
bosbegroeiing 0.569
bosbeekschildpad 0.569
bosbeleid 0.568

Spelling overlap,
meaning further away

References
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with Subword Information. Transactions Of The Association For
Computational Linguistics, 5, 135-146.

Dhingra, B., Liu, H., Salakhutdinov, R., & Cohen, W. W. (2017). A comparative study of word embeddings for reading comprehension. arXiv preprint
arXiv:1703.00993.

Fivez, P., Šuster, S., & Daelemans, W. (2017). Unsupervised context-sensitive spelling correction of clinical free-text with word and character n-gram
embedding. In 16th Workshop on Biomedical Natural Language Processing of the Association for Computational Linguistics (pp. 143-148).

Long, T., Lowe, R., Cheung, J. C. K., & Precup, D. (2016). Leveraging lexical resources for learning entity embeddings in multi-relational data. In
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (short paper).

Luong, T., Socher, R., & Manning, C. (2013). Better word representations with recursive neural networks for morphology. In Proceedings of the
Seventeenth Conference on Computational Natural Language Learning (pp. 104-113).

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. In ICLR Workshop Papers

23

