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WORD REPRESENTATIONS

Categorical or vectorial object associated with a word
Way of telling which words are (semantically) similar
Improve generalization in NLP applications
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Word embeddings
[Levy and Goldberg, 2014]

+ syntax

Word-space models (DS)
+dim. red.
[Pado and Lapata, 2007]

Clustering
[Suster and Van Noord, 2014]

Other (probabilistic) models
e.g. HMMs

[Grave et al,, 2013]




GOALS

Reproducing [Grave et al., 2013]:
dependency trees provide better context than sequences

Extend tree HMMs with syntactic functions



MODEL INTRODUCTION

Based on Hidden Markov tree models
Word representation from the hidden layer
Think of state as semantic class
Number of states set beforehand
Context-sensitive decoding (polysemy)



DECODING

Categorical: max-product (Viterbi)
or

Continuous: state posterior distribution

Context-sensitive
or
Static

average posterior distributions per word type
then use these vectors when needed (context-insensitive)
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TRAINING

Online EM with sum-product message passing
state splitting, final 128 states
Brown initialization
sparse approximate vectors



WHY SYNTACTIC FUNCTIONS

Prevent sharing same parameters by all children of a node

Account for (semantically) different children across syntactic
functions



DISCRIMINATING BETWEEN TYPES OF CONTEXTS

Syntactic function: additional observed variable in the model

Modulates transitions and emissions,
cf. [Bengio and Frasconi, 1996]

NMOD SBJ ROOT Loc NMOD PMOD

The magic happens beneath oak trees

In practice, can’t get reliable estimates for all syntactic
functions



NAMED ENTITY RECOGNITION

Evaluate on CoNLL tasks for English and Dutch

Approach
Structured averaged perceptron
Several lexical features as baseline [Turian et al., 2010]
Add word representations (128-dimensional) as features
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FRAME-SEMANTIC PARSING

Which predicate evokes which frame
(frame identification)

Which are the arguments constituting the frame
(argument identification)

Semafor [Das et al., 2014]
FrameNet
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CONTRIBUTIONS

Reproducing [Grave et al., 2013]:
dependency trees provide better context than sequences

not robust

Extend tree HMM with syntactic functions
works in certain cases
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