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CHAPTER 1

Introduction

Clearly much of the insight into
word-meaning is to be gained by
observing the ways in which words
are strung together by competent
practitioners of a language.
However, the approach has its
limitations. Semantics done this
way has more of the character of
an “observational science”, like
geology, than that of an
“experimental science”, such as
physics or chemistry. Scientists of
the former type are, in a sense, at
the mercy of the phenomena they
study; what happens, and when,
and under what conditions is
largely beyond their control.

[Cruse 1986]

A persistent problem in natural language parsing is resolving attachment ambi-
guities. In building a syntactic tree of a sentence, the problem is in deciding the cor-
rect attachment of a phrase between at least two possible attachment sites. Perhaps
the most ubiquitous and researched problem in this field is the prepositional-phrase
ambiguity (PPA, in the rest of the thesis) resolution. The following example is its
illustration in dependency parsing:

Example 1. verb ObjéCt preposition second noun

In its basic form, the task is to decide whether the PP, formed of a preposition
and a noun, should modify the noun or the verb (dotted arcs in the example 1).

The majority of approaches to resolving the PPA ambiguity use some form of
lexical information. From the example above, it is clear that the problem can be
largely tackled partly by accounting for the identity of the preposition and partly
by accounting for the identity of the noun following it. During the past 20 years or
so, the research has chiefly focused on solving the problem in isolation, i.e. given a
set of ambiguous cases, decide whether the correct attachment ought to be verbal
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or nominal. Recently, this approach has received criticism, and a new direction for
research was proposed which would seek solutions based on the parser output or
integrating in the parsing procedure. In our work, we make an effort to study PPA
disambiguation in this “natural” setting. This is achieved by proposing a method
that works on the output of the parser and also integrates with the parser by prede-
termining the dependency links for the hard cases in the text that is subsequently
analyzed by the parser. Our method would ideally correct (some of) the decisions
made by the parser, hopefully resulting in improved overall parsing accuracy. If
we do not succeed in actually improving the parsing results (which is possible due
to likely low impact), this could lead us towards improved understanding of how
distributional(-semantic) information can be used towards this end and in struc-
tural disambiguation in general.

To achieve our goal, we use lexical information gathered from large corpora, and
without the need for human annotation of PP-attachment cases. This makes our
approach unsupervised' and completely data-driven. We develop two distinct mod-
els capable of resolving attachment ambiguities. The first model makes use of the
selectional preferences between the preposition and the competing attachment sites
(verb and first noun). In the second case, we create a a vector-space representation
of the contexts/meaning of the words, which allows to introduce the identity of the
second noun into our model.

Despite the proliferation of the work on the PP-attachment disambiguation, our
original contribution is that we propose and evaluate a completely distributional way
of complementing the parser (parser’s output) with the type of lexical information
that is usually not captured/exploited in (statistical dependency) syntactic parsing,
and with, for one model, accepting the distributional hypothesis and taking the
step towards (lexical) semantics. We also view our task as detection (due to the
attachment data distribution) rather than the perspective traditionally taken in
the PPA disambiguation research — the classification. We believe that it is only
fair to focus on the type of PPA cases that are really problematic for the parser,
thus discarding prepositions that are straightforward for the parser (“de” in French).
Since this preposition is the most frequent in the language, the reported accuracy
figures in the past research in reality reported mostly the accuracy for exactly this
prepositions (“of” in English), which we see as a methodological drawback.

Understandably, a vast majority of the research has been performed on English.
For other languages, such as German, Spanish, Dutch and French, some work exists,
but is scarce. With taking French as our target language, we hope to contribute to
understanding of the PPA disambiguation and its role in syntactic parsing specifi-
cally for French.

In the following section, we start by setting the context for our work: we briefly

"We note that the definitions of the term “unsupervised” vary in the literature. Here, we use the
term to mean that we do not know the classification of the data in the training sample (contrary
to supervised learning, where the status or classification of a piece of training data is known, for
example because of human annotation). This definition is in line with [Manning & Schiitze 1999,
p. 232].



sketch the notions of dependencies, the types of dependency parsers and how we
can evaluate their output. We then present the distributional semantic framework
and techniques, together with the distributional hypothesis. In the second part of
the next chapter, we describe in detail the problem of PPA, we summarize the ap-
proaches to disambiguation and finally provide an exhaustive survey of the literature
on the subject. The second half of this thesis report is a detailed report of our ex-
periments. Firstly, a quantitative analysis of the PP-attachment cases is performed
on the gold annotated corpus, and an estimate of the parser errors is determined
on the already parsed texts. Secondly, we present the methodology in our main
experiments and evaluate the results. In the end, we summarize our findings and
contributions in the conclusion.






CHAPTER 2

Background

2.1 Natural language processing

In this section, we set the theoretical background and introduce the subjects and
techniques that relate to, or are used in, our approach to disambiguation. The
goal is to provide an overview without going into unnecessary details that are not
explicitly mentioned or dealt with in the rest of the thesis.

2.1.1 Dependency parsing
2.1.1.1 Foundations

Syntactic parsing is an analysis of the structure of human language sentences. It is
a key task in NLP, because it is a crucial step on the way to semantic processing
[Jurafsky & Martin 2008]. Since natural language sentences are often ambiguous as
to their syntactic structure, parsing is a hard task. It can be seen as a twofold task:
strict parsing, which will determine the set of possible syntactic representations of
a particular sentence, and a disambiguation procedure selecting among the set of
alternatives the preferred candidate. With statistical (probabilistic) modeling, it is
possible to determine the most plausible parse for a sentence in case of ambiguity.
We call the parsing system that uses such knowledge a statistical parser.

On the level of the syntactic representations they encode, the syntactic pars-
ing can be divided into two categories: dependency parsing vs. phrase structure
(or constituency) parsing. Dependency parsers construct the dependency structure
representing governor-dependent relations between words, usually complemented by
functional classes such as subject and modifier. In phrase structure parsing, on the
other hand, the representation groups words into phrases categorized with classes
such as noun phrase or verb phrase. It is important to realize that despite this
distinction, implicitly both categories can convey equivalent information as the con-
version from one into the other is possible in most cases. Because it is the first type
of parsing that is of primary interest in our case, we are leaving the topic of phrase
structure parsing aside.

Dependency parsing is capable of achieving highly accurate results in the analysis
of many languages and for many NLP tasks and applications [Kiibler et al. 2009].
Two common observations by the proponents of this branch of parsing is that the
predicate-argument representation is very intuitive and that it is especially suitable
for languages with less fixed word order. It makes use of dependency grammar
linguistic framework, in which words are linked by binary, asymmetrical relations
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called dependency relations |Tesniére 1959]. A dependency relation’s arguments are
the head (or the governor) and the dependent. A dependent stands in a relation
with the head if the head modifies it, and — in graphical representation — there is
an arc pointing from the head towards the dependent. The following is an example
of a dependency graph from the Penn Treebank (without POS-tags, taken from
[Nivre 2005]):

NMOD
SBJ NMOD

Example 2. Economic news had little effect on  financial markets

There exists another division of parsing systems depending on the provenance
of the (possible) grammatical rules, namely that of grammar-driven and data-driven
parsing. An approach is grammar-driven if a formal grammar was crafted and is
used in the construction of possible analyses of the sentence.! Parsing is data-
driven when the model (or grammar) is induced by means of machine learning
techniques from the previously annotated corpus data (a tree-bank). The two types
are not exclusive, however, since there exist parsers combining both, two examples
being the probabilistic context-free grammar parser of Collins [Collins 1997] and
the Dutch Alpino parser which joins an attribute-value grammar with maximum
entropy disambiguation. An example of a completely data-driven parsing system is
the MATE parser [Bohnet 2010|, which we use in our present work and present in
more detail in the next section. As is usual with data-driven approaches in NLP,
they can vary as to the amount of supervision included in the learning. Here, we
only deal with supervised dependency parsing, although applications of structural
disambiguation with distributional (semantic) methods are well-worth exploring also
in unsupervised parsing. The supervised dependency parsing consists of two different
problems, namely that of learning, which is about induction of a parsing model given
a training set of sentences, and parsing, where the goal is to arrive at an optimal
dependency graph given the model and a sentence [Kiibler et al. 2009]. The model
type, and the algorithms for learning the model and for parsing sentences let us
discriminate between two types of data-driven dependency parsers, fransition-based
and graph-based. Perhaps the best-known representatives of the two types are the
Malt parser [Nivre 2006] and the MSTParser [McDonald et al. 2005]. These are the
parsers regularly achieving among the best results in parser comparison events such
as the CONLL 2007 Shared Task on Dependency Parsing [Nivre et al. 2007].

'Note that the formal grammar, when it is crafted by a linguist, can be data-driven or not.
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2.1.1.2 Parsing systems and parser evaluation

This section introduces the parsing system we use in our research and the French
language corpora used for training and testing both the parser and our PPA disam-
biguation methods.

We use the MATE parser [Bohnet 2010] which is part of the MATE tools avail-
able at http://code.google.com/p/mate-tools/. The parser is integrated in the
JSafran software |Cerisara & Gardent 2009 which allows easy and fast training (and
several other tasks including annotation) of a model. In our case, the parsing em-
ploys POS-tags obtained by the TreeTagger [Schmid 1994]|. The MATE parser is
a state-of-the-art graph-based dependency parser that uses as its base the maxi-
mum spanning tree dependency parsing algorithm in combination with the passive-
aggressive perceptron algorithm. It achieved LAS of 90.33 for English and 88.13 for
Spanish, for example, on the CONLL 2007 data-set, thus beating other competing
systems. Due to a parallelization algorithm, the very good time efficiency makes it
appropriate for running relatively quick experiments.

Dependency parsers are normally tested by parsing a part of the tree-bank and
comparing the parses to the gold standard annotations [Kiibler et al. 2009]. The
following evaluation metrics are usually reported:

e Attachment score: the percentage of words with correct heads. Another vari-
ant takes the average of the percentage of words with correct heads for all the
sentences.

e Precision: the percentage of dependencies of a certain type in the parser output
that were correct

e Recall: the percentage of dependencies of a certain type in the test corpus that
were correctly parsed

e F-measure: the harmonic mean of precision and recall
The above metrics can be:

e Labeled: considering heads and labels

e Unlabeled: considering heads only

The most commonly reported figures are the labeled attachment score (LAS)
and unlabeled attachment score (UAS).

2.1.2 Distributional semantic modeling

In a broad sense, a word-space model, or a distributional semantic model (DSM,
in the following), is a computational model of meaning of linguistic units that uti-
lizes the distributional patterns collected over large corpus data in order to rep-
resent semantic similarity between these units in spatial proximity [Sahlgren 2006,
Turney & Pantel 2010]. Most frequently, the DSMs deal with the linguistic units
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on the word level, at least this level is the most researched, although it is be-
coming more and more common to encounter DSMs combining two or more
words (composition), moving from words to the phrase and the sentence level
[Mitchell & Lapata 2008, Mitchell & Lapata 2010, Baroni & Zamparelli 2010]. Ac-
cording to [Schiitze 1993], it is by vector similarity that we have that vectors which
are close represen semantically related words, and the other way around, vectors or
words which are far apart are unrelated. This idea was aptly named “the geomet-
ric metaphor of meaning” by Sahlgren.? There are many ways of building a DSM,
which is described in section 2.1.2.2. However, what all have in common is a type
of distributional hypothesis, introduced in the next section.

DSMs are normally implemented as matrices. We reserve the term DSM only for
matrices that include elements whose values are corpus (event) frequencies or some
other values derived from them, thus reflecting distributional properties of words.

2.1.2.1 Distributional hypothesis

“/.../ if we consider words or morphemes A and B to be more different
in meaning than A and C, then we will often find that the distributions
of A and B are more different than the distributions of A and C. In other
words, difference of meaning correlates with difference of distribution.”
[Harris 1954]

“You shall know the word by the company it keeps.” [Firth 1957]

“/.../ the meaning of a word is fully reflected in its contextual relations;
in fact, we can go further, and say that /.../ the meaning of a word is
constituted by its contextual relations.” [Cruse 1986]

In this work, we accept the core idea, reflected in the above quotes, which un-
derlies the word-space modeling and enables discussing semantic similarity, i.e. the
distributional hypothesis:

words with similar distributional properties have similar meanings

Different flavors of DSM will define “having similar distributional properties” in
slightly different manner: this can mean, for instance, “occurring in similar/same
documents” or “occurring in similar context windows of a particular size”, depend-
ing on the parameter configuration in the DSM design. The assumption stated
above is common not just in NLP applications, but other domains such as cogni-
tive science, corpus linguistics and lexicography |Lenci 2008, Landauer et al. 2007,
Kilgarriff 1997]. In a way also a function of the discipline in which the hypothesis
is assumed, |Lenci 2008] distinguishes between the weak and the strong distribu-
tional hypotheses. The weak version is a quantitative method for analyzing seman-
tic properties, emphasizing a correlation between semantic content and linguistic

2«Meanings are locations in a semantic space, and semantic similarity is proximity between the
locations.”[Sahlgren 2006, p. 19]
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distributions: the distributional method can thus help us study different lexical
semantic phenomena. In other words, it does not postulate that the meaning (as
elusive as the term itself is) can be entirely captured by observing linguistic contexts.
This version can be frequently seen in applications like word sense disambiguation,
thesaurus construction and question answering. The strong version raises the first
hypothesis up to the cognitive level: word distributions play a constitutive role in
semantic representations. There is a causal relationship between being exposed to
contexts of a particular word and abstract contextual representations for this word.
This assumption has been used to model linguistic-psychological research, e.g. sim-
ilarity judgments, semantic priming and child lexical acquisition. One particularly
well-known materialization of a DSM which was originally designed with this ver-
sion of distributional hypothesis in mind, is the Latent Semantic Analysis (LSA),
arguably a cognitively plausible model for semantic representations. Its usability
attracted the information retrieval community to adopt it as a particularly often
used technique in retrieving documents.

We shall hereby accept the first, weak version of the distributional hypothesis:
proximity in a word space model reflects semantic similarity between words or larger
linguistic units. What interests us is the application of a DSM in a structural dis-
ambiguation task, in a very concrete task of PPA disambiguation, which we view as
a sub-task of parsing. Since we do not pretend to carry out experiments with conse-
quences or insights for the cognitive level, there is no reason nor need for us to adopt
the stronger hypothesis. As it will become clear in the following chapters, we will
claim that distributional properties and distributional semantic similarity between
elements in an ambiguous PPA case could indicate what is the correct attachment
type. But what exactly do we have in mind when we say “semantic similarity”? To
answer this question, we note that this over-generalization of the term “similarity” is
perhaps the most acute problem and the most criticized aspect of distributional se-
mantics, which is undoubtedly related to the difficulty of the field to address essential
issues in semantic representation such as compositionality, inference and reference
[Sahlgren 2006, Pad6 & Lapata 2003, Lenci 2008]. Presently, however, this chal-
lenges are being more and more often addressed and tackled (see for example the
First Joint Conference on Lexical and Computational Semantics and the SemEval
task in 2012; see also the pioneering work on the subject of compositionality in
distributional semantics by [Erk & Padé 2008, Mitchell & Lapata 2008]). We rec-
ognize that, with very simple DSMs, where contexts are represented as bag of words,
we capture a very broad scope of relations that fall into the category of semantic
similarity (synonymy, antonymy, hyponymy, meronymy etc.). This is usually crit-
icized by taking the prescriptivist stance and approach the DSMs with a a priori
division of notions of semantic similarity (see [Sahlgren 2006| for a more in-depth
discussion). However, from a descriptive point of view, already a notion of broad
semantic similarity seems perfectly acceptable, and it is also true that different
(more sophisticated) implementations of DSM can readily outline specific semantic
similarity types or relations.
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2.1.2.2 Construction and parameters of DSMs

DSMs are models that can be conveniently represented with matrices. In this work,
we use upper-case letters to denote matrices and lower case letters to denote vectors.
A matrix A has m x n dimensions. m stands for the number of “rows” (e.g. unique
words or terms) and n for the total number of “columns” or “dimensions”.

a1 a2 v G

a1 a2 -+ Q2p
Am,n =

Gm,1 Om2 **° Qmn

Figure 2.1: Representation of a matrix.

The element aq 2 of A thus represents a value for the row vector a1, at the dimension
2.

Suppose we are interested in finding out similarities of some nouns occurring
in a corpus (the example matrix is taken from [Evert & Lenci 2009]). We build
our matrix representation of nouns occurring in a context window of some size by
scanning through the corpus for nouns. When we find a noun, we increment the
frequency count for each context word we encounter in the window. For example, we
see the noun “dog”, look at the words in the window, and increase the frequency by
1 if we find one occurrence of “bark”. Eventually, we could end up with the following
matrix

leash walk run owner leg bark

dog 3 ) 1 ) 4 2
cat 0 3 3 1 5! 0
A __ lion 0 3 2 0 1 0
whicontext Wl = e | 00 0 0 0 0 0
bark 1 0 0 2 1 0
w | 0 0 4 3 0 0 |

Figure 2.2: Example matrix A.

where row vectors are the nouns in the corpus and dimensions are context words for
these nouns. We see that, for the noun “light”, we did not find any occurrence with
any context word, possibly because the noun does not occur in the corpus at all.
The semantic content of a noun is thus represented as a row vector in A. Two nouns
are similar if their vector representations are similar. There exist many methods for
comparing vectors. One with which we can obtain a intuitive graphical representa-
tion of vector similarity is to first reduce the number of dimensions to 2 (for example
by means of a dimensionality reduction such as Singular value decomposition), and
then plot the vectors in a Cartesian plane. Since we only have two values for each
vector, we can interpret them as coordinates z,y.
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dog

- bark

d2
0
|

cat

car

di

Figure 2.3: Vectors of the matrix A in a 2-dimensional plane after the reduction of
A with the SVD

Note that the length of the vectors on the plot 2.3 is different and is a function
of the frequency counts in the vector. Because of the application of the SVD,
some values are negative, but this is not important for the interpretation here.
However, what is of real interest is the direction of the vectors. Vectors pointing in
a similar direction share a similar meaning, and vectors which are further apart are
less semantically similar. “Bark” and “dog”, as well as “cat” and “lion” are close to
each other, while “car” points pretty much to its own direction, indicating semantic
isolation. It is also almost orthogonal to “bark”, suggestive of the lack of semantic
similarity between two words.

In the matrix A, our dimensions were words obtained from context windows,
while rows were single words. According to [Turney & Pantel 2010], one of the
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fundamental distinctions in DSMs is the decision what will be represented by rows

3 word-

and columns. We can distinguish between (at least) three types of matrices:
context, term-document and pair-pattern. A word-context matrix is the one we have
just presented as an example in this section. The main idea is that we look at
the distribution of a word in a certain type of context (e.g., a window of a certain
number of words to the left and the right, word’s dependent or head in some specific
syntactic relation ...). In a term-document matrix, a document vector represents
the corresponding document as a bag of words. The number of vectors is the number
of documents in a collection. In information-retrieval terms, the frequency of a word
in a document would then indicate the relevance of the word/query to this document,
and looking at the vector for a document would express what the document is about.
In a pair-pattern matrix, rows correspond to word pairs, such as “policeman-gun”
and “teacher-book”, whereas columns are patterns in which pairs occur (“X uses Y”
and “X with Y”).

DSMs can be conveniently thought of as a tuple, which is a combination of a
matrix with specific parameters [Evert & Lenci 2009]:

<T,C,R,2W,M,d,S >

T: target elements for which the DSM provides a contextual representation,
i.e. rows

C: contexts in which T occur, i.e. dimensions

R: relation between T and C

W: weighting scheme for the values of the matrix
e M: DSM matrix, T' x C

e d: dimensionality reduction function, d : M — M’
e S: distance measure between vectors in M’

For each step in the construction of a DSM, various parameters should be decided
upon. The C will influence the type and the extent of corpus processing needed in
obtaining M. For instance, having a dependency parsed corpus, one can decide
to only choose T" and C' in a particular syntagmatic relation R, say subject (as in
|Padé & Lapata 2007]). The number of standard pre-processing procedures must be
decided upon, too, such as tokenization, lemmatization (normalization) and POS-
tagging. W and d get us to more mathematical steps. W deals with smoothing
or weighting the raw frequency counts that would otherwise — following the Zipfian
distribution* — provide us with a small number of very frequently occurring types
and an immense number of very infrequently occurring types [Evert 2005]. Various

30ther representations than matrices are possible, for example higher-order tensors
[Van de Cruys 2009].
“The frequency of the r-th most frequent type is proportional to 1/r.
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weighting techniques have been proposed in the literature. The logarithm of the
frequency

lOgg(l—FML',j) (2.1)

can be applied to each element of the matrix M, resulting in a dampening of high
count events. In information retrieval, it is common to use the tf-idf weighting
schemes [Manning & Schiitze 1999| (which we do not define here, since we do not use
them in our research). Another option is to use a version of the Poisson distribution
to weight the value of the matrix. Finally, association measures can be used (we
use them in our research) in order to put more emphasis to contexts which are
significantly associated with a target word. Different association measures behave
differently. Pointwise mutual information (PMI) is a score obtained after taking the
logarithm of the ratio between the observed co-occurrence probability of the word
with the context and the expected co-occurrence of the two [Church & Hanks 1990|:

P
PMI(wy,ws) = zogglm where P(wy,ws) = |“’1N“’2’ and P(w) = ‘;\”{'
(2.2)

The score can take any value, but is zero when w; and wsy are independent (not
sharing any information). Because of its lack of a fixed upper bound, it is not
possible to say when words are perfectly correlated. It thus allows only for relative
comparisons.

One well-known drawback of PMI, which is in our view frequently neglected in
the literature, is that it overestimates the importance of very rare words. To realize
the sensitivity of PMI to data-sparseness, we consider the case when w; and ws are
maximally associated. Two words are maximally associated when they only occur
with each other (for each occurrence of wy, we know that it co-occurs with wy and
that we have found a wyws pair). The probability of encountering either wy, wo or
wiwsg are thus the same:

P(wl,wg) = P(wl) = P(wg) (2.3)
and the above PMI formula becomes:

P 1
loggﬁ = loga B (2.4)
In other words, the lower the probability of a word, the higher the PMI. Several
variants of PMI have been proposed to alleviate this problem. One is to multiply

the PMI with the observed probability [Evert 2005]:
P(wy, w2)
P(wy)P(wy)

which was found to perform well in practice |Baroni & Zamparelli 2010] and it is
actually a correlate (a sub-term) of the Log-Likelihood Ratio [Dunning 1993|. Com-

Local-PM I (wy,ws) = P(wy,ws)logs (2.5)
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pared to the plain PMI, the formula will additionally weight the PMI score depend-
ing on how strong is the observed evidence for the co-occurrence. In other words,
very infrequent word combination receive less importance than frequent ones.

In addition to the PMI and LPMI, we use another variant of the PMI in the
experimental part, namely the Positive PMI (PPMI). It is calculated identically to
the PMI, except that the negative values, which are produced with the plain PMI
formula as a result of taking the logarithm (when the fraction part is smaller than
1), are mapped to 0. Negative values indicate the lack of association between the
two words. The lower bound of the PPMI thus becomes 0, which makes it more
handy for operations on matrices and vector comparison. [Bullinaria & Levy 2007]
found out that the PPMI outperformed several other weighting schemes in a task
of measuring semantic similarity with a word-context DSM.

A wide choice of metrics is available (step S) also for measuring similarity or
distance between vectors: the dot (also scalar) product, the Euclidean distance,’, the
cosine of the angles between two vectors, Jenson-Shannon divergence and relative
entropy are some of them. The cosine between two vectors is probably the most
often employed metric in vector-space modeling. It is also the one we use throughout
our experiments. The calculation takes the scalar product of the vectors and then
divides it by their norms:

-y _ 2221 iYi

x 2 2
1] \/Z?:lxi \/Z?:l Yi

In addition to the relative efficiency of calculating the Cosine metric, its attrac-

tiveness lies in the fact that it is easily interpretable, since it ranges from 1 for
maximally similar vectors (actually perfectly aligned) over 0 for dissimilar, or-

(2.6)

SimCOS(fa g) = ’

thogonal (right-angle) vectors, to —1 for vectors pointing in opposite directions
[Widdows 2004, Sahlgren 2006]. Note that when vectors include only positive val-
ues, the lower bound is 0. From our example vectors from the matrix A (2.2), the
Cosine between “cat” and “lion” is 0.8, while the Cosine between “cat” and “car” is
0.45.

With respect to the step d, the dimensionality reduction is often opted for when
constructing large DSM. There are two problems encountered when manipulating
very large matrices, one is the number of dimensions that can be in order of millions
for present-day corpora and the number of matrix elements with value 0, the so-
called sparsity problem. Since a statistical model requires a lot of data as evidence,
having a bigger DSM is generally a highly valued asset. However, this comes at
the expense of scalability and efficiency of any operation carried out on the matrix.5
The sparsity problem relates to the fact that, in a matrix without reduced number of

®Both are sensitive to the very frequent words, so the effects of vector length should be eliminated
before applying them

5Consider a matrix built from lemma types in the British National Corpus with frequency above
10 [Evert & Lenci 2009]. This yields a 83,926 by 83,926 matrix (7 billion elements), and with 8-
byte float data type for matrix elements, we would need 56GB of RAM to load it in the memory.
99,68% of such a matrix would be populated with zeros.
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dimensions, the total number of 0-valued elements outnumbers the non-zero values,
which is a consequence of the Zipf law (most of the words combine with a small set
of words, i.e. behave non-promiscuously). A partial solution to data sparseness is
to use a special compact sparse matrix format for storing the matrix. In such a rep-
resentation, only non-zero elements are stored linked to their respective indices. A
simple solution within dimensionality reduction is to select only specific dimensions
based on the frequency criterion. Looking at the frequency distribution for context
words, either the head or the tail, or both, can be pruned with a certain threshold.
For example, taking N number of most frequent words would remove “noise” from
low-frequency events, while removing the Q number of most frequent words would
eliminate the “function” words, i.e. words with little semantic discriminative power.
This could drastically reduce the size of the matrix and speed up computations.
This technique is often called the feature selection.” A similar operation can be
performed on matrix rows, where only the words/terms of interest to the research
are considered.

In another approach, the number of dimensions is reduced as well, except that
the vector representations for all dimensions are changed (vectors are mapped to a
sub-space). These techniques include Singular value decomposition (SVD), Principal
component analysis (PCA) and Random Indexing (RI), among others. We hereby
introduce SVD, since it is the only dimensionality reduction technique used in our
experiments.

SVD is a technique rooted in linear algebra for deriving the matrix A from the
product of the factorization of the original matrix A. SVD can be seen as data
smoothing, extreme values being mapped to less extreme, and at the same time
solving the sparsity of data problem by creating a dense matrix. To illustrate the
technique, A is decomposed into three linearly independent® matrices:

Figure 2.4: SVD decomposition.

U is the matrix of left singular vectors with the same number of rows as A,
but with m number of dimensions. V is the matrix of right singular vectors with
the same number of columns as A, but with n number of rows. ¥ is the matrix of
singular values on the diagonal (o ...0y,) with other elements being zero. All os
are ordered from the highest value to the lowest, essentially representing the amount

"We are aware of the fact that with feature selection the information from discarded dimensions
is completely lost. But we assume that the information was not relevant or was negligible in the
first place.

8They are orthogonal to each other. Simply put, this means that no matrix can be derived from
the other two.
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of variance captured by these latent dimensions (how significantly they contribute
to the product). If we omit some singular values when reconstructing the original
matrix, the A will be the best possible approximation of A in the lower dimensional
space. Reducing 3 to k highest singular values and adapting the dimensions of U and
V' correspondingly is commonly called truncated SVD (see [Deerwester et al. 1990]
for an application on a word-context DSM):

Figure 2.5: Truncated SVD.

Multiplying only the truncated U and ¥ will produce a matrix with only k
dimensions. Finally, it is often argued that applying a dimensionality reduction
such as SVD can improve the quality of a semantic space |[Landauer et al. 2007]

To sum up, in this section we listed and introduced some of the possible parame-
ters in DSM construction, but by no means all, and the interested reader should con-
sult |Turney & Pantel 2010| or [Evert & Lenci 2009] for a more complete picture. It
is the combination of parameters that determines the DSM flavor, each known under
a different name. Here are some examples: Latent Semantic Analysis (LSA) for ap-
plying the SVD to log-frequency weighted term-document matrices in information-
retrieval and cognitive science research [Landauer et al. 2007|; Hyperspace Analogue
to Language for a plain-frequency word-context DSM which implements a context
window that distinguishes between left and right contexts [Lund & Burgess 1996];
Dependency Vectors for dependency-based contexts in a word-context DSM with the
log-likelihood ratio for weighting [Pad6 & Lapata 2007]; and Distributional Memory
for dependency-based contexts with LPMI weighting.

2.1.2.3 Selected advantages of distributional semantic models

Lastly, we would like to answer the question why using DSM is an attractive choice
compared to using already existing human-built inventories. Firstly, they require
less labor in construction than the human-built ontologies such as WordNet. This
way, they can be more readily used for languages with less developed language
technology infrastructure, or for different domains, provided of course that a text
corpus can be created. Secondly, they have an increased coverage over human-built
resources; they are less affected by the data sparseness. Thirdly, they are completely
data-driven, while this is not necessarily so for human-built knowledge bases that
are sometimes affected by the bias of introspective and prescriptivist judgments.
Fourthly, they are not limited to any set of grammatical category, and easily provide
information about, say, prepositions and conjunctions, which are usually omitted in
the inventories such as WordNet. Finally, they perform well on a variety of tasks in
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NLP |Turney & Pantel 2010].

2.2 Structural disambiguation: the case of PP-
attachment

“Your dog’s been chasing a man on
a bicycle.”

“Don’t be stupid! My dog can’t
ride a bike.”

Structural disambiguation is necessary whenever a sentence can be parsed in two
or more different ways. Attachment ambiguities are the most common structural
ambiguities, and the prepositional-phrase attachment is one of the most common
attachment ambiguities in many languages, it is definitely best studied in English.
We hereby concentrate only on the problem of PPA ambiguity and leave other types
of structural and attachment ambiguities aside.

2.2.1 The problem of prepositional-phrase attachment

The sentence fragment displaying ambiguity in prepositional-phrase attachment is
the one for which we can easily imagine two or more different parse trees. In the
timeworn linguistic examples (which are as the matter of fact hardly ever encoun-
tered in corpora) of the following kind:

Example 3. “I saw the man with the telescope.”
Example 4. “I saw the cat with the telescope.”

the PP “with the telescope” can attach to either the verb or the object. In the
first case, the sentence without further context cannot be reliably resolved even by a
human.? Attaching to the object noun would mean that the man is in possession of
the telescope, while attaching to the verb would be interpreted as additional infor-
mation about the act of seeing. In the second example, the human processor would
probably conclude that the correct attachment cannot go to the object noun because
cats do not usually wear telescopes. Note that in linear processing of the second
example, the sentence is still ambiguous when we reach the preposition. It is only
after processing the second noun that we are able to disambiguate. In this work, we
say that the PP modifies either the verb or the object noun in order to avoid the
debate about whether it is an adjunct or an argument [Schiitze 1995, Merlo 2003].
To us, this question is a matter of degree rather than a categorical decision. Fur-
thermore, the question is difficult and out of the scope of this thesis, although we
are aware that the issue may play some role in PPA ambiguity resolution.

 Another similar example is from [Manning & Schiitze 1999]: “We have not signed a settlement
agreement with them.”
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In certain situations, knowing only the P without the second noun is sufficient
to decide reliably on the correct attachment:

Example 5. “Un juge a rejeté l'abandon de toutes les accusations /... /”

We observe that this is so in the case of preposition “of” in English and “de” in
French in direct-object constructions, because both attach to the object noun almost
exclusively (we will see the exact statistics in the next chapter 3.1). Conversely,
prepositions such as “into” and “despite” in English and “malgré” in French almost
never have nominal attachment meanings.

Intuitively, we see that knowing the lexical identities of the preposition and
the second noun helps in the attachment decision (see |Hindle & Rooth 1993,
Collins & Brooks 1995| for a similar formulation).

We would like to draw the reader’s attention to some other observed properties
related to the study of PPA. In a situation where the object is realized as a pronoun
rather than a noun, verbal attachment is much more likely:

Example 6. “/.../ we haven't signed it with them /... /”

Also, according to one’s intuition, verbal attachments are analogous to adverbs.
The set of prepositions is limited, there is a strong tie between P and N2, and only a
limited set of conventionalized N2s can occur after the P. With nominal attachment,
we tend to think that the choice is less restricted. In the example 7,

Example 7. /... / eal a pizza with fork.”
Example 8. “/.../ eat a pizza with anchovies.”

in order to express the instrument with which the act of eating is done, there is a
restricted choice in the N2 position. We also note that in the case of verbal modifica-
tion, the object noun or a noun phrase tends to get generalized. Similar observations
are also shared by |Zeldes 2009, Fabre & Frérot 2002]. Another interesting property
that likely influences the PPA is the use of determiners and possessive pronouns, and
the distinction between definiteness/indefiniteness. Interestingly, this seems to be
so for both N1 and N2, as the examples for English and French show, respectively:

Example 9 (from [Hirst 1987]). “The women discussed the dogs on the beach.”
Example 10. “The women discussed dogs on the beach.”

Example 11 (inspired by |Gala & Lafourcade 2007|). “/... / acheter des livres pour
enfants.”

Example 12. “/... / acheter des livres pour ses enfants.”

Although the problem of PPA is generally reduced to PP occurring after direct-
object transitive V-N1 constructions, the PPA ambiguity is present also in the case
of indirect objects:
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Example 13. “Répondre a la crise par une nouvelle conception de Uentreprise”
in concatenations of PPs where the attachment could go to different nouns:

Example 14 (from the Etape/Ester corpus). “/... / le prochain enregistrement du
Masque et la plume sera cette fois en public le jeudi 28 octobre a 20h00 au studio
Sacha Guitry de la Maison de Radio France pour deux emissions, /... /”

with adjectival phrases [Hirst 1987]:

Example 15 (attachment either to verb or adjective). “He seemed nice to her.”
and with several verbs [Hirst 1987]:

Example 16. “Ross said that Nadia had taken the cleaning out on Tuesday.”

With the examples above, we hope to show that the direct object PPA ambiguity,
which is definitely the most studied one, is by no means the only one.

2.2.2 Approaches to disambiguation of PP-attachment

The following sections introduce possible categorizations of the work on PPA dis-
ambiguation.

2.2.2.1 Isolated vs. parsing-aware

In the majority of the NLP research done on the subject, the task usually consists
of classifying quadruples in the direct transitive construction of the form V N1
P N2 as cases with either verbal or nominal attachment. The classifier’s output
is evaluated against the gold decisions on the same data-set, and the accuracy is
usually reported. The issue of retrieving PPA cases from the raw or parsed corpora
is not addressed. The question whether PPA classifiers, also called re-attachers, can
actually outperform the parsers is not dealt with. We call this approach “isolated”
because it does not consider PPA cases as found in the corpus or as found by the
parser, but rather already extracted as an isolated set; because it does not treat
the PPA disambiguation in the context of parsing. This means that the results
may not be realistic and may not have practical relevance for NLP applications.
The literature, both from 90’s and recent, presented in the section 2.2.3, adheres to
this line of research unless otherwise stated. The isolated approach was for the first
time extensively criticized by [Atterer & Schiitze 2007], although other research had
noticed the problem already before [Foth & Menzel 2006].

We call “parsing-aware” the line of research that deliberately tried to resolve the
PPA problem as a task going hand in hand with parsing. Here, the goal in general
is to improve on parser’s performance on the PPA cases. In addition to the work
by Atterer and Schiitze, the work representative of this approach is relatively recent
[Agirre et al. 2008, Henestroza & Candito 2011, Foth & Menzel 2006].

Related to the PPA in the context of dependency parsing, we would like to point
to [Bohnet & Kuhn 2012]’s observation that PPA can be particularly problematic
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depending on the type of the parser employed: a transition-based dependency parser
is forced to make an attachment choice at a point where only partial information
about the word’s own dependents is available. This can be illustrated with taking a
closer look at the situation where the parser has processed the N1 in a PPA example
and when it is about to consider the upcoming P (being part of a larger PP). It
is forced to attach the P to either V or N1 without “knowing” anything about the
identity of the P’s dependent. Let us consider the following examples:

Example 17. “Peter bought a house with an old garden.”
Example 18. “Peter bought a house with an old friend.”

When the parser adds the arc for the P, the decision is final and the parser got
only one of the above examples right. No information about the N2 was included.!®
This problem of transition-based parsing is, on the other hand, not present in graph-
based parsing: the attachment site for the P is decided upon only when the N2’s
identity has been considered. This observation that is highly relevant in our case,
would imply that, all other things being equal, a transition-based parser ought to
perform worse on PPA cases than a graph-based parser. This is something we leave
for future experiments.!?t

2.2.2.2 Amount of supervision

The work on PPA disambiguation can be divided into supervised and unsupervised.
The supervised systems use an annotated corpus where PPA decisions are solved
for training a classifier (e.g. |Collins & Brooks 1995, Hindle & Rooth 1993]). Such
a corpus is, for example, the Penn Treebank. The unsupervised approach uses a
corpus that was perhaps preprocessed, but does not include manual annotations
of attachment decisions. Some research also focused on extracting unambiguous
attachment examples from corpora by means of manually defining retrieval heuristics
and then learning on these cases [Ratnaparkhi 1998, Pantel & Lin 2000].

2.2.2.3 Other divisions

It is possible to divide the prolific work on the subject according to other criteria,
such as binary vs. non-binary classification ([Merlo 2003] uses 4-way classification
in noun/verb adjunct or argument); the research trying to account also for PPs
other than just the standard PP following the verb—direct-object pair (long PP
concatenations)'?; and exploiting information restricted to 4-tuples vs. wider con-

text [Olteanu & Moldovan 2005] ([Altmann & Steedman 1988] even claim that for

10Bohnet and Kuhn propose a solution that is based on recalculation of the scores of all the
histories.

"That is also perhaps why [Henestroza & Candito 2011] were not able to improve on the MATE
parser, but suceeded with the Malt.

12Several PPs concatenated one after the other mean a factorial growth of possible
trees/dependency graphs:
1 PP = 2 graphs



2.2. Structural disambiguation: the case of PP-attachment 21

the full PP-resolution the construction of a discourse model in which the entities
occurring in it are reasoned about is needed).

2.2.3 Literature survey

One of the first works on PPA disambiguation in the NLP comes from
[Hindle & Rooth 1993]. They focus on studying association strength between verbs
or nouns and prepositions in an unsupervised setting. They estimate the associa-
tion probabilities on the 13-million word parsed Association Press corpus with the
specification of what constitutes an unambiguous attachment. The probabilities are
then compared based on a likelihood ratio. For testing, they create a 1000-sentence
sub-corpus for which the attachment is annotated manually by the authors. In their
attempt, no account is made for the N2. They achieve 80% precision and 80% recall
on the V N1 P triples, compared to around 86 % precision and recall for human
judges when provided only with the triples without additional context.

[Ratnaparkhi et al. 1994] extract supervised training material for PPA disam-
biguation from the Wall Street Journal part of Penn Treebank [Marcus et al. 1993],
20801 sentences are available for training and 3097 for testing. This is the data-set
that was widely used and accepted as the de-facto standard by the subsequent re-
search (called RRR data-set in the following). Authors’ contribution is also in that
they describe two different performance lower bounds: always choosing the noun at-
tachment, which equals the nominal attachment ratio of 59% in English; and choos-
ing most likely attachment for each preposition, 72.2%. The average human accu-
racy is 88.2% when provided the quadruples only, and 93.2% when given a complete
sentence. With their feature-rich maximum entropy modeling, they achieve 77.7%
for word-only and 81.6% for word and class feature accuracy. |[Ratnaparkhi 1998|
collected 910,000 unique unambiguous triples (V or N1, P, N2) from the Wall Street
Journal, and proposed a probabilistic model based on cooccurrence scores calculated
from the collected data. His unsupervised method achieved accuracy of 81.9%.

Also in a supervised fashion, and exploiting all four elements in a quadruple,
[Brill & Resnik 1994]| achieved 81.8% accuracy while employing 266 transformation
rules.

[Collins & Brooks 1995] propose a disambiguation model that is similar in con-
cept to language modeling, i.e. it employs maximal information when possible, and
gradually backs off to more restricted information otherwise. Collins and Brooks
use the RRR data-set and report 84.5% accuracy with morphological pre-processing.
One interesting finding of theirs is that the use of low count events (mostly for the
complete quadruples; which occur once or twice in the training set) contribute sig-

2 PPs = 6 graphs
3 PPs = 24 graphs

n PPs = (n + 1)! graphs
So, in a less common but nevertheless possible scenario of 5 PPs, we would thus in theory need to
consider 720 different dependency graphs!
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nificantly to the improvement on the test corpus.

One of the most well-known works in PPA disambiguation is without doubt the
one by [Stetina & Nagao 1997], who achieve the highest results, approaching human
accuracy. Their method consists of semantically annotating the corpus with Word-
Net concepts and then inducing a decision tree with WordNet concepts as attribute
values. The motivation for including semantic classes into the disambiguation was
motivated by the fact that in the work of Collins and Brooks, the precision culmi-
nated when the complete quadruple was found in the training, but these cases were
very rare due to the data sparseness. Stetina and Nagao tackled this disadvantage
by approximating lexical items with less sparse semantic classes. The accuracy in
their experiments on the RRR data-set was 88.1%.

Stetina and Nagao were however not the only ones to utilize word senses as
features in PPA disambiguation modeling. [Agirre et al. 2008] studied PPA dis-
ambiguation in the context of parsing (Bikel’s and Charniak’s parsers). Word-
Net semantic classes are mapped to the original tokens (nouns, verbs, adjectives
and adverbs) in the subset of the Brown corpus, and the parser is then trained
on the distribution of semantic classes. The evaluation is made both for parsing
in general and specifically for PPA cases. With their technique, they achieved
20.5% error reduction in the PPA disambiguation task, which was also higher com-
pared to the general parsing experiment, suggesting that lexical semantic infor-
mation is particularly important in PPA resolution.'? We can think of the in-
corporation of more abstract, semantic classes into parsing and PPA resolution
as a way of reducing data sparseness and improving generality across domains
[Coppola et al. 2011]. [Medimi & Bhattacharyya 2007] is another example of re-
search using WordNet synsets as a back-off technique in the case of data sparseness.
Learning only from the unambiguous examples collected from a corpus, they achieve
almost 85% accuracy in PPA resolution on the RRR data-set.

[Olteanu & Moldovan 2005| take a rich-feature space (27 features) approach
with the support-vector machines learning model. They explored the usefulness
of manually-annotated semantic information in the form of verb-frame semantics
(FrameNet) and voting with count ratios obtained from WWW to avoid data sparse-
ness. Both types of features were found to significantly improve the overall accuracy,
however the contribution is still minimal: the verb-frame feature improved the result
by 1%, while querying the WWW contributed from around 1 to 2.5% in accuracy
depending on the data-set.!* Their approach is specific in that it is exploratory in

13[Candito & Seddah 2010] ran a similar experiment in statistical parsing of French, where ter-
minal forms were replaced by more general symbols, particularly clusters of words obtained through
unsupervised clustering. However, their experiment, while positively affecting the parsing accuracy,
cannot be said to deal with semantic classes/clusters with respect to any of semantic hypotheses
we made (their clusters are obtained through Brown hard clustering algorithm, which is based on
maximizing the likelihood of a corpus according to a bigram language model).

"“The exact percentage is not known as the authors only made the observation that including
this type of information significantly improved the results, without explicitly exploring the actual
contribution. It was also the case that the feature set combination changed while moving from
no-WWW- to WWW-aided disambiguation.
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nature: overall, little justification and result interpretation is provided for some of
the features. It turned out that that collecting frequency counts of nominal and
verbal attachments from the WWW helps overcome data sparseness problem, but
this makes the approach susceptible to limitations of using WWW-aided collection
of linguistic data [Kilgarriff 2007]. Other works that included WWW in PPA disam-
biguation, either to estimate frequency counts of quadruples directly or to estimate
a co-occurrence strength, include [Kawahara & Kurohashi 2005] (87.3% accuracy on
the RRR dataset with an SVM method where unambiguous examples are extracted
from the corpus), [Calvo & Gelbukh 2003] for Spanish, [van Herwijnen et al. 2003]
for Dutch, |Gala & Lafourcade 2007] for French.

[Pantel & Lin 2000] describe an algorithm for unsupervised classification of PP-
attachment which uses a collocation database extracted from dependency relations
and a corpus-based thesaurus that returns for a particular word a set of similar
words along with similarity scores. They use frequency estimation from the corpus
where possible and approximate rare events with contextually similar words (this
method was not found to contribute significantly to the results). They achieve the
accuracy of 84.3%. [Bharati et al. 2005] is an upgrade of [Pantel & Lin 2000] with
a hybrid approach utilizing information from the WordNet. [Zhao & Lin 2004] is
another upgrade incorporating distributional semantics. The classification decision
is made according to the weighted majority vote by the k-nearest neighbours. The
nearest neighbours are determined in the DSM by computing cosine similarity, Dice
coefficient or Jensen-Shannon divergence on pure frequencies or mutual information
values between the input vector and a training vector. The authors found out that
the cosine similarity with pointwise mutual information performed best, yielding
86.5% accuracy on the RRR dataset.

Working from the generative perspective, [Toutanova 2006] achieves 85% with
Bayesian networks on the RRR dataset. The goal of the paper, however, is the
comparison between discriminative and generative learning, and not the PPA dis-
ambiguation. In a similar stance, [Toutanova et al. 2004| note (citing |Bikel 2004|)
that the Collins parser uses bilexical word dependency probabilities only 1.5% time,
the rest of the time backing off to one word conditioned on the POS, as a result
of the data sparseness. Sparseness can be reduced with stemming, distributional
similarity or WordNet, which is exactly what they show by integrating this types
of information into their model. They introduce a random walk (Markov chain)
model for learning the parameters for PPA disambiguation, which provides a gen-
eral framework for unifying the different notions of smoothing. On the RRR data-
set, their baseline model achieves 86% accuracy, while the best-configuration model
(including stemming, Jenson-Shannon divergence similarity and WordNet features)
achieves an impressive 87.56% accuracy. Similar results to the baseline model re-
ported in |Toutanova et al. 2004] were also obtained by [Spgaard 2011] who used
Bayesian networks learned with hill climbing for his generative part and conditional
random fields for discriminative learning. He used only unigram features in his
research (P, V, N1, N2, together with their distributional clusters).

As we mentioned in the section 2.2.2.1, [Atterer & Schiitze 2007]’s paper marks
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a turning point in the PPA disambiguation research, in that it provides a critique
of the methodology used in the previous research. They introduce the notion of “or-
acle”, which stands for a pre-system that extracts 4-tuples in most of the previous
literature on the subject. Having an oracle thus means knowing the two alterna-
tive attachment sites. This oracle uses a gold standard corpus to extract tuples
based on syntactic parses. Atterer and Schuetze remark that the performance is
higher in the presence of such oracles. They argue for a new method of evalua-
tion that does not presuppose the existance of the oracle and that is application-
driven, i.e. evaluated in the context of parsing. In their experiment, they build
artificial sentences of type “They V N2 P N2” taking as the data source the stan-
dard RRR dataset. They claim that state-of-the-art parsers do not differ signifi-
cantly in their performance compared to PP reattachment classifiers on this task.
Namely, [Olteanu & Moldovan 2005, Collins & Brooks 1995, Toutanova et al. 2004]
(only the reattachers that do not include any additional resources such as WordNet,
dictionaries, Web, named-entity recognition or stemmers, were analysed) are found
to perform insignificantly differently than the Bikel’s parser in one experiment where
three-lexical dependencies are taken into account by the parser and in another ex-
periment on the Penn Treebank where bi- and tri-lexical dependencies are taken
into account by the parser. Importantly, this article has had consequences for how
we perceive the baseline. This is no longer e.g. always choosing the nominal at-
tachment site, but it is simply the attachment performance of the parser. A similar
observation was also made by [Foth & Menzel 2006], who distinguish between the
isolated and situated attachment evaluation.

For French, [Henestroza & Candito 2011] provide specialized models for parse
correction in PPA and coordination attachment. They obtain the following results
for PP-attachment: UAS for the baseline (parser) was ranging from 83.2 to 86.1
on the French Treebank evaluation set. With corrective models, they were able
to significantly improve PPA UAS of 2 out of 4 parsers (Malt and Berkeley, but
not MST and Bohnet (Mate) parser). Their approach modifies around 1-2% of all
tokens, but it introduces a relatively large number of errors (changing correct parser
decisions into incorrect): 29-88% of wrong-to-correct modifications are correct-to-
wrong modifications. They acknowledge that a ceiling was reached and that outside
resources (subcategorization for verbs, selectional preferences) should be used for
this task in order to achieve better results. Their work is valuable in how they
determine the set of possible heads and dependents, because they take as input
the output of the parser (no gold-standard oracle). For the correction, the set of
all dependents is checked in left-to-right manner, and at each dependent, candidate
heads are identified in a neighborhood around the predicted head. A scoring function
selects the best head. Then, the parse tree is updated accordingly. The scoring
function uses discriminative linear ranking models with features encoding mostly
syntactic context. They mention that PP-attachment in French accounts for around
30% of incorrect attachments and has a parser error rate of around 15%.

[Gala & Lafourcade 2007| present an ongoing research on the resolution of PPA
ambiguities in French, but without providing a complete evaluation (e.g. no com-
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parison to baseline). Their method consists of querying the WWW with PPA ambi-
guities obtained from the text parsed with the XIP parser, and learning similarities
between lexical signatures from 21,048-sentence Le Monde corpus. The precision of
their method ranges between 75% and 80.6%.

Some other research deserves to be mentioned. [Volk 2002] investigates the PP-
disambiguation issue with the combined, supervised and unsupervised, exploratory
approach on German. He recognizes the problem of manually annotated treebanks
for non-English languages, which calls for exploring unsupervised methods in greater
depth. His disambiguation technique relies on comparing frequencies. |Zeldes 2009]
suggests an interesting, linguistically-motivated alternative using productivity mea-
sures for overcoming the problem of unseen events. Because these measures indicate
how probable is encountering one-time occurrences at a certain position in the con-
struction (or in a PPA quadruple), they could be used in PPA disambiguation (for
example, verbal attacments are unlikely to have novel nouns in the N2 slot). How-
ever, this presupposes a kind of semantic disambiguation between, for example,
instrumental PPs and non-instrumental PPs, because this is what influences the
productivity of slots. This question is not adressed in the paper. Productivity mea-
sures were also investigated for French in [Fabre & Frérot 2002|. Their approach
consists of intersecting two productivity measures, one for the number of different
nouns occurring with a verb and a preposition (V4+P+|N|), and the other for the
number of different verbs occurring with a preposition and a noun (|V|+P+N). Their
work touches upon the use of subcategorization frames. This is an interesting line
of research, although not frequently encountered. [Gamallo et al. 2003| learn word
classes from the co-specifying slots (head-modifier)!® in subcategorization frames,
and evaluate on a PPA disambiguation task for Portuguese.

Y5Their idea of co-specification is in fact quite similar to what is described in [Erk & Padé 2008]






CHAPTER 3

Prepositional-phrase attachment
disambiguation

with distributional methods

In this chapter, we present the methodology behind our experiments and the results.
Before the experimental part on the disambiguation, we introduce some general
statistics of the phenomenon of PPA in the corpus, we also look at the figures
for the parser performance on the task. Following that, we show the functioning
of our system for the retrieval of ambiguous and unambiguous PPA cases. Ounly
then we move to the two parts of our disambiguation experiments: one including
association strength in which we consider the role of the P in disambiguation; the
other part including a DSM which will account for the role of both the P and
the N2 in disambiguation. Our approach to PPA treatment is unsupervised in
the following way: we can disambiguate given the parser output by finding cases
deemed ambiguous, but without the need for gold annotations for training. We
would like to point out that relying on the parser output, the task gets harder (the
impact smaller), because only the cases recognized as ambiguous by the parser can
be realistically expected to be checked by our PPA disambiguation techniques. This
means that the recall of the true ambiguities from the corpus can be maximally as
good as the parser recognizing them.

In the following, we use the term “PPA case” for any construction of a verb with
direct object noun followed by a preposition and a second noun. For the sake of
simplicity and to make evaluation more straightforward, we do not treat indirect
objects in PPA, just like we do not treat the ambiguity of adjectival-phrase and
many-verb attachments (see 2.2.1). The section 3.3.2 on retrieving includes more
precise rules for what constitutes a PPA case.

3.1 Quantitative analysis of the problem

3.2 Experimental design and goal

We use the French Treebank (FTB) [Abeillé & Barrier 2004] for testing in our ex-
periments. It contains 12351 sentences, and was created from the newspaper Le

Monde. More specifically, we use the dependency converted tree-bank described by
[Candito et al. 2010].
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For learning selectional preferences and distributional semantic models, we use
the French Gigaword 2nd edition corpus containing news-wire text data from Agence
France Press and Associated Press French Service [Angelo Mendonca et al. 2009)].
A part of the corpus was tagged with the TreeTagger and parsed with MATE. It
contains 36,355,130 sentences and 477,534,407 words.

The MATE parser was used for parsing the Gigaword corpus and for experiments
on the FTB. The models for the parser were trained on the FTB. On the test set,
the MATE parser obtains UAS of around 87%.

3.3 Preliminary experiments

3.3.1 Error analysis of the parser output

We performed an error analysis on the development set of 120 sentences of the FTB,
which shows the performance of the parser on the PPA cases (as defined above) in
the lower part of the table. The upper part introduces gold-annotation statistics on
the same set of sentences.

Sentences 120
PPA cases with V or N1 att. 79
PPA per sent. 1 per 1.39
n‘ﬁﬁf}?ﬁ;] att. ratio 0.44
De-only cases 37
De-only cases: n‘(’)‘ﬂ?j;] att. r. 0.054
Non-de cases 42
Non-de cases: %‘?ﬁ] att. r. 0.786
Complex prep. cases )
Parser ER 0.19
Parser ER “de”-only cases 0.054
Parser ER non-“de” cases 0.31

Parser ER complex prep. cases | (.2

Parser ER on gold nominal att. | 0.11
Parser ER on gold verbal att. 0.286
*PPA cases with another att. 26

Table 3.1: PPA statistics for the gold decisions and the parser’s output on the
development corpus

The occurrence rate of the PPA is 1 per 1.4 sentence,! and the attachments are
slightly more frequently nominal (66%) than verbal (44%), which is undoubtedly
a consequence of the most common French preposition “de”. This preposition thus
occurs in 47% of all PPA cases and is attached to the object noun in 94.6% of time.
If we discard “de”, the ratio between verbal and nominal attachment changes to 79%

!This is likely to vary with respect to how the “PPA case” is defined.
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in favor of verbal attachments.? Other figures from the table show: the number of
complex prepositions (5), where the complex preposition (“locution prépositive”) is
any preposition constituted of more than one word (“quant &”, “au niveau de” etc.);
number of PPA cases with attachments other than to V or N1 (mostly this is the
situation with several PPs following one after the other).

The general error rate for the parser on the PPA cases as defined above is 0.19
(£0.07 with a 95% CI). The parser error rate is the highest on the non-“de” cases:
0.31 (£0.083 with a 95% CI). Then, we also know that the parser ER is higher for
the attachments that are verbal in gold. Since the ER on verbal attachments is
higher than on nominal attachments, we can say that the parser is somewhat biased
towards nominal attachments.

Based on the observations in this section, we decide to only consider non-“de”
PPA cases in our experiments. Firstly, this could increase the impact of our dis-
ambiguation system, and secondly, because “de’-attachments are so common and
display a very low parser error rate, it does not make sense to include these cases
into disambiguation.

3.3.2 Retrieval of PP-attachment cases

We implement a retrieval system that outputs a list of lemma quadruples of the
form <V N1 P N2> (optionally with the attachment decision of the parser or the
gold standard) given as input a parsed corpus in the CONLL format?.

The retrieval script relies both on POS-tag and dependency relations. This is in
line with the research such as [Atterer & Schiitze 2007]. We also complement these
two types of information with a lexicon of complex prepositions.* This is needed
because of the frequent mistagging of complex prepositions. In this way, preposition
occurrences are determined also by lexicon look-up.

In our retrieval, we linearly process the texts in the corpus and extract a quadru-
ple if:

e P is tagged as preposition or is in the lexicon, and is not a form of “de”
e P head is in “obj” relation with N2 dependent

e NI is a common noun, a proper name or an abbreviation, and it is in “obj”
relation with V head which must have a POS-tag of a verb

e P dependent is in some dependency relation with either V head or N1 head

We would like to emphasize that in the current version of the retrieval, PP
concatenations are also extracted, but they are represented as a V N1 P N. This

In an analysis before the one described here, we calculated the statistics on 65 sentences from
the test sub-corpus. The verbal attachment for “de” was the same (4.5%), while the parser error
rate on the verbal attachments was even more elevated (50%).

3http://ilk.uvt.nl/conll/index.html#dataformat

4The lexicon is partly built of complex preposition lists from various linguistic repositories on
the web, and partly of complex prepositions extracted from the FTB.
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means that having a sentence fragment with the abstraction V N1 P1 N2 P2 N3,
the following two representations will be created: V N1 P1 N2 and V N1 P2 N3.
This is not optimal, however, since it is impossible to arrive at the attachment of
P2 to the preceding PP (N2), which is perhaps less often but still encountered in
the corpus. An improved version should either not consider the concatenated PPs
at all, or build alternative tuple representations.

Total sentences (dev subset) 120
Number of gold non-“de” cases | 42

Number of retrieved non-“de” 35
Precision 0.886
Recall 0.738

Table 3.2: Retrieval results

As the above table shows, we can extract 35 non-“de” cases from 120 sentences
in which there are 42 true non-“de” cases. The precision (here measured as the
percentage of retrieved instances that are true PPA instances in the gold) in a real-
case scenario is then 0.886 +0.057959 ¢y, while the recall (the percentage of true
gold PPA instances retrieved by the system) is 0.738 +0.079g59, ;- Precision is for
example lowered by the parser attaching to the wrong verb. The recall is lowered
by the following:

e restrictions in our retrieval system that, for example, demand the object to
have a POS-tag for noun, but because of mistagging it was not retrieved

e parser’s attachment is not to V nor N1, while the gold attachment is
e N1 is attached to a coordinating conjunction instead of a verb

e complex prepositions are sometimes not tokenized as one unit: a pre-
processing of the complete corpus would be necessary in order to remedy
this

On this particular data-set and taking into account the retrieval quality, what
would then be the maximal contribution we could expect from the disambiguation
system? Since we retrieve 35 cases, we can try to correct parser’s decision in 35 cases.
But 4 cases were not truly ambiguous —in gold, the PP was attached to neither V nor
N1 — (lower precision), so we can only hope to correct attachment site in 31 cases.
Of course, the majority were already correctly attached by the parser. Precisely, for
our 120-sent. development set, 8 cases were falsely attached by the parser. Without
generalizing from this particular analysis based on a particular (relatively small)
corpus, the impact of our correction system would be limited to around 8 non-
“de” cases per 120 sentences (i.e. 1 case per 15 sentences). Thus, given parser’s
performance and the retrieval quality, a disambiguation system’s impact could be
maximally 1 false-to-correct modification of a non-“de” case per 15 sentences.
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3.4 Prepositional co-occurrence model

3.4.1 Experiments

In our first disambiguation experiment, we explore the effect of association strength
between the V or N1 and the P. We extract from the Gigaword corpus the V+P
and N+4P lemma pairs by defining rules employing both POS-tags and dependency
relations. We create two different collections: in one, the pairs are extracted regard-
less of the surrounding context, while in the other, the pairs are extracted from the
so-called unambiguous contexts. With unambiguous contexts, we want to be (more)
sure that the P in the pair really attaches to the first element in the pair, so we
define unambiguous contexts in which alternative attachment is not possible. This
is done by simple heuristics, inspired by [Ratnaparkhi 1998], such as:

e unambiguous nominal attachment (noun phrases in the beginning of a sen-
tence): no V should occur between the start of the sentence and the P

e unambiguous verbal attachment: no N should occur between the V and the P

We thus obtain 25,437,541 V+P and N+P pairs for ambiguous and 18,999,728
pairs for unambiguous contexts (i.e. 25% reduction in the size of the ambiguous
collection).

We use mutual information as a measure of association strength. The incorpora-
tion of MI into attachment resolution can be justified as described in the following.
If we think of our task as classification, then the objective is:

A € {nom,ver} (3.1)
arg max P(Alv,nl,p,n2) (3.2)

The term above can be decomposed:

arg max P(v,nl,p,n2|A)P(A) (3.3)
arg max P(v,nl,p|A)P(n2|A)P(A) (3.4)
arg max P(v,nl|p, A)P(p|A)P(n2|A)P(A) (3.5)

The term P(v,nl|p, A) can be directly estimated with MI. If A is verbal, then the
term can be rewritten as P(v|p)P(nl), and if A is nominal, then P(nl|p)P(v). The

PMI, as defined in the equation 2.2, is calculated with the formula logg%.

In our case, we are interested in the maximum value, so attachment is verbal if:

P(v,

loga ey
P(nl,

loga Pty

> 1 (3.6)
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This fraction can be shown to correspond to the terms P(v|p)P(nl) and
P(nl|p)P(v):

P(vlp)P(p) P(vlp)
ZOQQ P(’U)P(p) — lOQQ P(U) —lo P(v|p)P(n1) (3 7)
P(n1]p) P(p) Piuil) ~ "2 P()P(nllp) '

loga P(n1)P(p) loga P(nl)

If this was our model, all parts of the equation 3.5 would need to be estimated.
For example, P(A) could be the prior of 0.786 in the case of verbal attachment. The
other two terms would also be priors: one for a specific preposition and the other
for a specific N2.

Because we know that the attachments are mostly verbal, the task can be thought
of as detection, in which the default attachment is verbal, and we detect a positive
instance (i.e. nominal attachment) if we have sufficient evidence, meaning that the
ratio between two scores should be above a certain threshold. Thus, the detection
can be viewed as a trade-off between failing to choose the nominal attachment
where the nominal attachment is correct, and choosing the nominal attachment
when verbal is correct. Thus, for this experiment and the one in the next section, we
evaluate by looking at the full spectrum of detection results for different thresholds,
which is more meaningful than just reporting one figure (say, accuracy) for one
threshold. We show the results by plotting either a ROC curve or a precision-recall
(PR) curve [Davis & Goadrich 2006]. Before defining what the curves represent, we
introduce some basic terminology. A positive example is the detection of a nominal
attachment in our case. A negative example is not detecting anything and leaving
the attachment as verbal. True positives (TP) are then examples correctly detected
as positives. False positives (FP) refer to negative examples incorrectly detected as
positive. True negatives (TN) correspond to negatives correctly detected as negative.
And finally, false negatives (FN) refer to positive examples incorrectly detected as
negative. Precision is the ratio NDTJripFP, recall is the ratio TPE%, and the False
positive rate (FPR) is Fl'i%'

The ROC curve plots the FPR on the x-axis and recall on the y-axis. The
PR curve plots the recall on the x-axis and precision on the y-axis. The more the
ROC curve approaches the left side and then the upper left corner of the plotting
area, the better the system. The line connecting the bottom left corner with the
upper right one is the performance of a random detector. For the PR curve, the
more it approaches the upper right-hand corner, the better the system. Both curves
are in fact very similar. Each point in ROC or PR space represents a specific
detection system, with a threshold for calling an example positive. It is sometimes
claimed that PR curves can expose differences that are hardly observable in the
ROC space. We will usually report the statistical significance values (p-value) and
average differences (d-value) obtained by a paired permutation significance test for
comparing Area under curve (AUC)® for two detectors.

SAUC is equal to the probability that a detector will rank a randomly chosen positive example
higher than a randomly chosen negative one.
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The goal of the experiment is to find out whether stronger association between
the elements V and P results in a more likely verbal attachment than nominal, and
vice versa. We present our results from calculating with the PPMI and with the
LPMI. In both experiments, only the co-occurrences with the frequency of > 5 are
taken into account. We test the technique on the corpus of 3,398 non-“de” quadruples
extracted from the FTB. However, for the cases where both MI-derived values (V+P
and N1+4P) are zero or non-existent, we do not want to force any decision, so we
eliminate these instances from the experiment.® We are thus left with 2460 instances
for the ambiguous context configuration and 2368 for the unambiguous one.

The following plot shows the results of the LPMI model compared to the PPMI
model:
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Figure 3.1: PR curve for the prepositional co-occurrence model with PPMI weights
(red) or with LPMI weights (blue), obtained from ambiguous contexts. The baseline
of always choosing the verbal attachment is the line in green. Number of instances
= 2460.

Both models perform significantly better than the baseline of always choosing the
most common, verbal attachment (of course, such a model never detects any nominal
attachment). The results of the statistical significance test are almost identical for
both measures: d=0.241, AUC= 0.74, p=0. The overall difference between both
models is small and not significant. However, we can observe slightly different
behaviour for both models, namely the models’ precision behaves very differently

SFor the cases where one of the values is zero, we set the value to a very small positive values,
essentially zero, that allows calculating the ratio.
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depending on the recall: LPMI outperforms PPMI at low recalls, while at recall
values of around 0.7 and more, the PPMI achieves slightly better precision than
the LPMI. For a conservative detection, where the difference between the models
is most distinctive, we are inclined to say that it is the weighting of the MI score
by the joint probability of a co-occurrence event (LPMI) that has a positive effect,
thus contributing to a more precise detection.

Even though the precision at high recall looks quite small for both measures
(ranging from 0.47 at the recall of 0.7 to a smaller precision at higher recall), one
should be aware that this figure is lower because it only indicates how precisely
nominal attachments are detected, not how precisely we choose attachment sites in
general.

Next, we are interested in the contribution of the unambiguous context in the
construction of the co-occurrence models. Once again, we plot PR curves for both
LPMI and PPMI models.
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Figure 3.2: PR curve for the prepositional co-occurrence model with PPMI weights
(red) or with LPMI weights (blue), obtained from unambiguous contexts. Number
of instances = 2368.

Overall, we see that the detection quality decreases compared to the setting
with ambiguous contexts. This goes against our expectation. A possible reason
could lie in the rules for defining unambiguous contexts, which also use dependency
relations. The parser’s accuracy on the Gigaword corpus is lower than on the FTB,
a fact mostly due to errors in sentence segmentation.
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When observing the full spectrum of values on the plot, we see that the difference
between the LPMI and the PPMI follows the same pattern here as in the previous
plot. This suggests that these differences are due to the way the LPMI and the
PPMI are calculated rather than due to the characteristics of the data.

The performance in this experiment is still significantly better than the baseline
for both models (PPMI: d=0.187, AUC=0.688, p=0; LPMI: d=0.188, AUC=0.687,
p=0). The LPMI model from unambiguous contexts performs significantly worse
than the one from ambiguous contexts: d=0.199, p=0. In the case of PPMI, the
results from the statistical significance test are: d=0.198, p=0.

3.4.2 Summary

We saw in this section that a partial probabilistic model, only accounting for either
V or N1 and the P, can provide us with quite useful information, despite its sim-
plicity. It is, however, affected by the size of the corpus used for learning word pair
probabilities. In our attempt of learning the model from unambiguous contexts,
the results are, counter-intuitively, even worse than from ambiguous, undefined con-
texts. In more general terms, we can note that in this experiment, the support for
one attachment or the other comes from the preposition co-occurring with one of
the preceding elements more prominently than with the other.

3.5 Vector space model

3.5.1 Experiments

In these experiments, we want to test our intuition that the semantic similarity
between N1 and the PP, compared to the one between V and PP, facilitates the
attachment decision. When the semantic similarity between N1 and PP is higher
than the one between V and PP, we decide that the attachment should be nominal.
In one experiment, we take into account only the N2 from the PP, and in another
experiment, we let the PP be represented by a composed vector of P and N2.

We build a word-context matrix of 2,816 rows and 10,000 dimensions. Rows
are the elements of the quadruples extracted from the FTB (V, N1, P, N2). For
convenience, we call them “terms”. Dimensions are the 10,000 most frequent words
from the Gigaword corpus. The least frequent context word has the frequency of
1411. Because of the constraints on both rows and columns, we reduce the matrix
to a size that can be handled in the working memory (225MB) without problems,
and at the same time we reduce the sparsity of the values. The matrix thus contains
28,160,000 elements, of which only 74.1% are zeros.

For both terms and context words, we use lemmas. Our base DSM is a simple
frequency count matrix, constructed by scanning through the Gigaword corpus and
noting all occurrences of a term with the context words in a window of size 3. The
context word can be any word satisfying the POS constraints (we forbid some POS
such as pronouns and determiners). The context window is implemented as a flexible
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window of varying size with the maximum of 3 words to the left and 3 words to the
right of the term. So, if our term is the first word in the sentence, only the 3 words
right to it will be checked and noted (if they are true context words). If the term is
the second word in the sentence, one word to the left and 3 words to the right will
be recorded (if the condition just mentioned is met), etc.

We experiment with four different weights for our matrix: the logarithm of the
frequency count of each matrix element (see equation 2.1); the PMI, LPMI and
PPMI variants of the mutual information (see equations 2.2 and 2.5).

In addition to the dimensionality reduction on the basis of the frequency of
context words, we use the SVD technique to obtain a reduced matrix (see figure
2.4). In our case, we opt for 300 dimensions in the new truncated matrix. This
means that we use 300 os (singular values) in the reconstruction of the new matrix.
The number of dimensions chosen is motivated by the frequent use in the literature
(e.g. |Baroni & Zamparelli 2010] reduce a 12,000 by 10,000 matrix to 12,000 by
300), but also by the fact that in this way, we account for most of the variance
in the original data, that is 92.1%.7. By applying the SVD in the experiments,
we are less concerned by the practical, size-related advantages of the SVD. What
is of interest is obtaining a DSM that will better represent the semantic similarity
between the items compared, thus resulting in improved PPA disambiguation.

In our work, we use exclusively the cosine as the metric for vector comparison
(equation 2.6). The cosine is calculated between two vectors, which provides a
score ranging between 0 (if none of the matrix cells were negative; e.g. in a plain
frequency DSM) or -1 (if some values were negative; consider the case of a singular-
value decomposed DSM) and 1 (perfectly aligned vectors). We normally perform
two cosine calculations (e.g. between N1 and N2, and between V and N2) in order
to get a score by division. Intuitively, this score would represent that two cosine-
compared vectors are more similar (two terms are more semantically similar) than
the other two, and we can think of the final score resulting from division as the
amount of confidence that two vectors are more similar than the other two. It is the
higher semantic similarity between the elements in the quadruple that is expected
to correlate with the increased possibility for a particular attachment. We are thus
interested in observing thresholds § (or the trade-off) for the detection of a nominal
attachment based on the ratio. To illustrate our hypothesis, we take a N1 N2 pair
and a V N2 pair from the quadruple V N1 P N2. Then, when one pair is more
semantically similar than the other, we simply consider this as support for deciding
on the attachment. An increased semantic similarity of N1 N2 over the pair V N2
thus provides us with the support that the attachment is nominal.

"Note that the os are ordered from the highest to the lowest, and that each of them represents
the variance it is able to capture. For example, reducing our matrix to only 2 dimensions would
mean accounting for 35% of the variance in the original data. The singular values are distributed in
the form of a Zipfian curve: very few values are needed to account for a large amount of variance,
and the contribution from the tail of the curve/distribution is negligible.
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.. Cos(nl,n2)
Anom it Cos(v,n2)

>0 (3.8)

In our first attempt, we only account for the role of the second noun in the
attachment resolution. However, we can also try to incorporate the P in our semantic
comparisons, thus arriving at a complete PP representation which is then compared
to the V and the N1. We obtain the PP by composing individual vectors for the
P and the N2. We define composition as vector addition and vector multiplication
only [Mitchell & Lapata 2008]:

pp = ap + fn2 (3.9)

pp=p-n2 (3.10)

A composed vector representing the PP can thus be either a result of adding the
vectors for the P and the N2, where o and [ are arbitrary weights, or a result of
multiplying vectors. In the experiment incorporating the complete PP, our task
becomes the following:

.. Cos(nl, f(p,n2))
Anom it Cos(v, f(p,n2))

> 0§, where f € {addition, multiplication}  (3.11)

All the experiments presented in the continuation are tested against the complete
FTB. In the first experimental setting, we start with a DSM with plain frequencies
as values. At this stage, we do not consider vector composition, so we only perform
comparisons with the N2 alone. We compare this DSM with two other DSMs,
one with removed 100 most frequent context words (this way, we eliminate the
function words that incidentally passed the POS filtering on the context words
because of inaccurate tagging), another where plain frequencies are transformed
with the logarithm. When a significance test is carried out, we find out that DSMs
perform poorly, and that none of the DSMs perform better than the “random”
curve, which is the baseline of always choosing the verbal attachment. P-values
for the three models range between 0.1 (the plain-frequency DSM) and 0.8. We
deliberately avoid interpreting any differences between them because none performed
significantly better than the baseline.

In the second step, we apply the mutual information weights to the plain-
frequency DSM. Here, we can see the improvement over the baseline for LPMI
(d=-0.0219, AUC=0.478, p=0.037) and PPMI (d=0.033, AUC=0.533, p=0.008),
but not for the plain PMI. The plot below shows the performance at various thresh-
olds:
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Figure 3.3: ROC curve displaying the PMI-weighted DSM (red), the LPMI-weighted
DSM (blue) and the PPMI-weighted DSM (green).

We see that the performance of the LPMI-weighted DSM is significantly worse
than the baseline. This simply indicates that the LPMI does contain some use-
ful information, but is applied in an inappropriate way. As a side experiment for
the LPMI-weighted DSM, we only based our detection on the semantic similar-
ity between N1 and N2, without calculating the ratio (meaning without using the
similarity between V and N2). In this way, LPMI did perform significantly better
than the baseline, implying that the information it obtained from the similarity be-
tween V and N2 did not contribute to better results, but actually severely degraded
them. To sum up, our findings here confirm the observations from the literature that
PPMI performs better than the plain PMI (the difference is statistically significant
at d=-0.0223, p=0).

Having seen the influence of the weighting schemes on the detection results,
we now turn to investigating the effects of dimensionality reduction. We reduce
the number of dimensions of the best-performing DSM configuration from the last
experiment (the PPMI-weighted DSM) to 300 and to 2 by applying the SVD. Con-
sulting the ROC curve reveals that the DSM with 300 dimensions outperforms the
2-dimensional DSM, and probably also the PPMI-weighted DSM from the previous
experiment. Compared to the baseline, the difference is statistically significant at
d=0.0676, AUC=0.568, p=0.
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Figure 3.4: ROC curve displaying the PPMI-weighted DSM after truncation with
the SVD to 300 dimensions (red) and 2 dimensions (blue).

Compared to the 300-dim. DSM, the 2-dim. DSM results in a worse perfor-
mance. The difference is statistically significant at d=0.0459, p=0 (AUC for the
2-dim. DSM is 0.522). This can be explained by the fact that the 2-dim. DSM suf-
fers from the loss of variance (remember that it only captures 35% of the variance
in the original DSM). In order to be sure that the application of SVD brings about
an improvement over the PPMI-weighted DSM without dimensionality reduction,
we test for the significance of difference between the two: d=-0.0346, p=0.

In the next experiments, we try to incorporate fuller information about the
PP by composing the N2 with the P. We thus measure the similarity between V
or N1 and the vector resulting from the composition of P and N2. If we use the
addition with equal weights (a=£=0.5) as the composition function, and use the
best possible parametrization from the last experiments (300-dimensions, PPMI),
we obtain a detection curve that performs better than the detector that only uses
the N2 information: d=-0.0128, AUC=0.58, p=0. On the plot, we see that the
improvement at the area of interest (where the FPR is low) is greater than for
mid-ranged false-positive rates. However, the improvement in general looks quite
small.
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Figure 3.5: ROC curve displaying the PPMI-weighted DSM after truncation with the
SVD to 300 dimensions, with the composed PP representation (blue) and without
it (red).

We also tried to tune the weights in the addition function, but no setting could
significantly improve the default weight of 0.5. And although the multiplication was
expected to outperform addition, as is normally accepted in the research on com-
position, this was not so in our experiment. The DSM with the PP representation
obtained by multiplication did not perform better than the baseline.

In a further exploration with respect to distributional semantic composition,
it could be argued that the preposition should not be composed only with the
N2, but that it should be integrated with the V or the N1 as well, since in some
situations P can be more easily thought of “belonging” to the verb than to the N2
(e.g. “réflechir a/sur”). The decision on which parts of the ambiguous quadruple
should be composed could be motivated by the PP type (argument or adjunct),
or the sub-categorization frames, as long as these types or frames could be learned
automatically. We received some justification for this line of thought by conducting
an additional experiment, in which we compose the P both with the N1/V and the
N2, that is, without any attempt to discriminate between the situations in which
the P would be better composed with the N1/V and the situations in which the P
would be better composed with the N2. Even though such an experimental setting
is purely exploratory, the findings are promising. Such a DSM is parametrized
with 300-dimension SVD, PPMI and the addition as composition function for both
V/N1+P and P+N2 (weight set to 0.5).
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A " Cos(anl + Bp,ap + fn2)
" Cos(aw + Bp, ap + Bn2)

> 0, where a = 8 = 0.5 (3.12)

The DSM outperforms the best previous configuration (300-dimension SVD,
PPMI, composition of the PP-only by addition with weight of 0.5) with the following
statistical summary: d=-0.0111, AUC=0.591, p=0. The research in this direction
is in our opinion certainly worth exploring in more detail.

3.5.1.1 Integration with the parser

In this experiment, we try to position the PPA ambiguity resolution by means of
DSM-based detection into the context of parsing. The MATE parser trained on
the FTB, provides us with the baseline UAS of 86.93%. In the experiment, we
use a modified version of the MATE parser that is forced to keep the preannotated
dependencies while linking remaining unattached words. We call this type of parsing
constrained parsing. This is a novel technique that guarantees that the resulting
dependency tree is optimal.® We thus incorporate attachment decisions as pre-
annotations for use in constrained parsing. Before the parser processes the test part
of the FTB, we annotate the attachments (we build the corresponding dependency
arcs) according to the semantic similarities between the V/N1 and the N2. These are
acquired from the DSM which uses PPMI-weighted elements and which is truncated
to 300 dimensions with the SVD. The parser is then run on the pre-annotated test
corpus, and the UAS is calculated. The following table provides the overview of the
results for different thresholds used in detecting nominal attachments. In order to
determine the maximum impact we can expect from the PPA disambiguation, we
also force the correct attachments (dependencies) for all the quadruples recognized
by our retrieval system. This oracle achieves the UAS of 87.25%. Note that we
do not report the LAS because the DSM-driven disambiguation cannot provide any
information about the labels of the relations.

Threshold | Deps pre-annotated | UAS
0.0462 62 0.863
0.5326 62 0.865
1.0190 62 0.868
1.5055 62 0.871
1.9919 62 0.8726***
2.4784 62 0.8726***
2.9648 62 0.8722

Table 3.3: Parsing experiment with DSM-based attachments. *** represents the
best result

8 A simple corrective model could modify the parser’s output, but the dependencies that were
not modified would not be optimal anymore from the parser’s perspective.
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The thresholds 1.9919 and 2.4784 produce the highest UAS of 0.8726%, which
is even slightly higher than the oracle performance. This apparent paradox can be
explained by the fact that the parser makes more mistakes outside the quadruples
when it uses the oracle pre-annotated attachments than when it uses only some
correctly annotated attachments. Even though we observe a small increase in the
results when DSM-based attachments are used, this difference is not statistically
significant.

In table 3.3, all suggestions by our detector were taken into account when prean-
notating the test corpus before constrained parsing. However, as mentioned before,
the cosine ratio can be considered as a measure of the confidence for the propo-
sitions of our DSM-driven detector. Hence, given the already good performances
of the parser alone, a better integration between our detector and the parser can
be realized by constraining the parser to keep only the most reliable dependen-
cies suggested by our detector. We test now such an experimental setup by using
two thresholds: one for the most likely (in the sense of the cosine ratio) nominal
attachments cosine r. > d,0m, and another for the most likely verbal attachments
cosine 1. < Oyer. By varying both 8,0, and 0y over the full range of observed cosine
ratios, we actually observe that there are many possible values for both thresholds
for which the DSM-driven detector corrects the PPA proposed by the parser.

We report next an excerpt of these thresholds, along with the absolute number of
correct attachments made both by the parser on the PP-attachment cases proposed
by the DSM detector and the DSM detector.

Over Onom Number of | Correct Correct
attachment | att. by the | att. by the
cases parser DSM-driven

detector

1.078217 | 1.7003012 | 44 31 33

1.078217 | 3.2809374 | 39 26 32

1.078217 | 1.3897803 | 46 32 34

1.078217 | 1.9061964 | 43 30 33

0.9382211 | 2.546115 | 36 23 27

0.9382211 | 1.5775068 | 39 25 28

0.9382211 | 2.680369 | 34 21 26

0.9382211 | 1.3190644 | 41 26 28

Avg. ac- 0.69 0.769
curacy

Table 3.4: Parsing experiment with DSM-based attachments for 483 threshold com-
binations (onyl an excerpt is shown together with the average accuracy).

We can observe on this excerpt that the DSM detector often proves useful to
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correct the parser decision, and also that exploiting the confidence measure of the
cosine ratio helps in focusing on the most useful suggestions of the DSM-driven
detector.

Although the absolute number of occurrences of dependencies corrected by the
DSM detector is too small on this test corpus to result in a significant increase of
the global UAS, this integrated model is very interesting, because it exploits the
best of both the parser and the DSM detector, in this way always providing a small
but consistent improvement of the parsing accuracy for the PP-attachment. Such
a solution may prove especially powerful in semi-supervised learning approaches,
which need to integrate additional information that is not already modeled in the
parser itself to parse a very large corpus, and iteratively retrain new versions of the
parser that better integrate this new type of information.

3.5.2 Summary

In this section, we implemented a system for PPA resolution that is able to perform
better than the baseline model of always choosing the most frequent, verbal attach-
ment. The system is a DSM weighted by PPMI, truncated to 300 dimensions by the
SVD, and incorporating composition of vectors for the preposition and the second
noun, in order to arrive at a single semantic representation for the PP. Despite the
fact that our DSM configuration performs significantly better than the baseline, the
detection, as observed from the ROC curves, is in practice not very accurate. We
would normally expect to see a well-defined trade-off between precision and recall,
or between recall and the false positive rate, however, we cannot observe it from
our data. This can simply be caused by the fact that the information we can get
from the second noun (or from the second noun in combination with the verb or the
first noun) helps in some cases, but often, even if the semantic similarity between,
say, the first and second noun is very high (and the similarity between verb and the
second noun is low), the attachment is still, counter-intuitively, verbal. This could
then be explained by at least three things: the problem of PPA consists of differ-
ent types of constructions/phenomena where sub-categorization frames for verbs,
for example, could play a role; the intuition that the choice of attachment site is
affected by the semantic similarity, as defined in this section, is not reliable or is not
the only predictor; errors from the retrieval of PPA cases, POS-tagging and parsing
contribute noise in our distributional semantic models.

The above observations suggest that the semantic similarities we obtain from
a DSM could be used as a supplementary source of information for a strong base
model, perhaps the prepositional co-occurrence model, or they could be integrated in
the parsing. Indeed, our last experiments tried to situate the DSM-driven detector in
the context of parsing by pre-annotating the dependencies. We use a novel approach
in which the best of both worlds, the DSM-obtained attachments and the parsing
model, can be integrated in an optimal result. Even though it was not possible to
significantly improve the UAS of the baseline parser, this is largely understandable,
since the problem (or our definition of it) is quite specific and narrow. We did
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find out, however, that with distributional semantic modeling we are able to resolve
many cases that were incorrectly attached by the parser.

A note on the experiment implementation

The code for the experiments was written in Python and is being
made available in the public repository https://github.com/SimonSuster/
PP-attachment-disambiguation. We made extensive use of the following pack-
ages: yard (for plotting ROC and precision-recall curves), numpy and scipy (for
scientific computations on arrays and matrices), aima (for co-occurrence counts),
myconllutils (to manipulate CONLL format files). Some plots were produced in R.


https://github.com/SimonSuster/PP-attachment-disambiguation
https://github.com/SimonSuster/PP-attachment-disambiguation

CHAPTER 4

Conclusion

In this thesis, we focused on the role of distributional methods, especially distribu-
tional semantics, in the prepositional-phrase attachment ambiguity resolution. We
investigated both the contribution of a co-occurrence-based model, accounting for
the preposition along with the either attachment site, and a word space model,
which provides a more complete representation of the entire prepositional phrase by
measuring semantic similarity between items in an ambiguous case. We defined the
task of PP-attachment resolution as a detection, with the information obtained from
our models acting as a confidence that the attachment is of a particular type. Posi-
tive and encouraging results were obtained with both approaches, the co-occurrence
model and the distributional semantic model. The latter was integrated into pars-
ing by providing dependency annotations which were then taken into account, but
not altered, by the parser. Even though the contribution of the detector on our
test set proved too small to observe a significant improvement in the overall parser
performance, we saw that the attachments proposed by our method outperform a
large number of attachments annotated by the parser, and that this approach is
particulary appealing for consideration in the future.

Further work would need to investigate the following points in order to reach a
more complete understanding of the role of distributional semantic information in
PPA and more broadly in structural ambiguity resolution:

e Exploring settings with chances for larger impact, i.e. where the contribu-
tion from a DSM could be of most value, such as parsing spoken corpora or
unsupervised parsing.

e The same approach that was presented in this thesis should be tested on
another language, perhaps starting with English, because this would make
comparisons to other results in the research community easier and more effec-
tive.

e Ixploring compositionality in a greater degree. We saw that whenever we
perform composition, we obtain more meaningful semantic vectors, at least
for our application of PPA disambiguation.

e Incorporating parsed-text to a larger extent in the DSM. The problem we faced
that hindered such an attempt was the segmentation errors on the Gigaword
French corpus, which makes the output after parsing more affected by the
erTors.
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Chapter 4. Conclusion

e Aiding the parser can be implemented in several ways. One option, as pre-

sented here, is the pre-annotation together with constrained parsing. Another
solution would integrate with the parsing feature scheme, which is also at-
tractive as it tries, similarly, to arrive at the optimal result from the point
of view of the parser. Yet another possibility is processing raw text with se-
mantic classes which are then incorporated in the parsing as an alternative
distribution on which the parser is trained.

We only focused on one graph-based dependency parser throughout the thesis.
However, we remarked that a transition-based dependency parser could have
more difficulties with the resolution of PPA. This would need to be explored as
well, and it could yield a greater impact of the PPA disambiguation technique,
provided of course that the transition-based parser really performs worse on
these cases.

Finally, a natural continuation of our work is to move away from the concrete
case of PP-attachment and to develop models that can cope with other types
of structural ambiguity for which the parser error rate is above the average,
or even, with the structural ambiguity in general.
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