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Intuition

Given a collection of input representations,
the attention mechanism:

1. finds relevance scores for input representations based on our current point of

interest

uses the relevance scores to weigh the input representations
3. aggregates those into a single representation



Basic terminology

Given a collection of input representations (keys),
the attention mechanism:

1. finds relevance scores for input representations based on our current point of
interest (query)

2. uses the relevance scores to weigh the input representations (values)

3.

aggregates those into a single representation (context vector)



Two main reasons for using attention:

- to improve model’'s performance,

- for interpretability (visual highlights of attention weights to analyse a model’s
prediction).

Different foci in literature:

- establishing relevance & compatibility
- memory addressing

- feature selection

- discovering alignment

- interpretability tool



A generalised view of attention

e = f(qg, K)

f is a compatibility function
q is a query vector, qER"
K are key vectors, KeRnKxd(K

“Energy” scores e contain information about the relevance of a key to the query

a=dle)

g is a distribution function (commonly softmax)

Attention weights a are the primary outcome of the attention mechanism.
They are applied to the input representation VervxW* vielding a context vector c:

— <d(k)
c= Z i=1 aivi

*K and V can be obtained via the same weight matrix.



Diagram of the attention mechanism (1/2)
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Diagram of the attention mechanism (2/2)
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More on compatibility function f(q, K)

Some common approaches:
- 'K (dot product)
- cosine(q, K)

- (9'K) /+/n: scaled dot product, e.g. in Transformer; n=key vector dimension, for stability
of gradient computation

Parameterised:
- g WK (bilinear or general)
- act(g'WK + b) (MLP)
- Wi ‘act(W,q + WK + b) (additive)

- deep attention, convolution-based attention...



Attention in machine translation



Place of attention in neural machine translation (MT)

Recurrent neural network (RNN) for MT, without attention (Sutskever et
al., 2014):

encoder: h® = f(x, h®_,)

cRhd — d : _
decoder: h® =f(y_,, h% ., c); Plyly_.c)=9(h,vy_; c)

¢ = h®. (context vector, here set to be encoder’s final state)

hc't is decoder’s newly generated hidden state,

fis a non-linear activation function

g is a non-linear activation function producing valid probabilities

Input sentence is encoded into a single vector c*

*"'You can't cram the meaning of a whole %&IS# sentence into a single S&!#* vector!" (R. Mooney)
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A neural MT model without attention

Decode into target
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W ith attention (Bahdanau et al. 2014, Luong et al. 2015)
Decode into target

Encode the source

o Each output y. depends on a
— — . . weighted sum of all input states

- hdi = g(yi-l’ hd C')

i-1” i
‘h—% e | ‘h—ez mad ‘ﬁg(_ - F\_$- - ¢ = Tj:1 aj,j.hej (.now, distinct c at
every position i)
X X X3 XT - a,; = softmax h®'h?_|

- (he = [h%; b))
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Adding attention (Bahdanau et al. 2014, Luong et al. 2015)

Encode the source

et hs[ hs
here he+ hs

Decode into target

Y, Y, Y

> h? F->he,

Attention in MT is “discovering”

alignment™: high a.. ;meansy, IS a
likely translation of X,

*Cf. Koehn and Knowles (2017) "



Alignment matrix from attention weights
(Bahdanau et al. 2014)
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A few attention variants



Special case of one input sequence

Self-attention:

- e =f(qg, K) stays the same, but quXK
- Relating different positions of the same input to compute its representation
- Intuition: ability to discover lexical relations between tokens

Transformer (Vaswani et al., 2017):

- overcomes sequential computation with an architecture in which “recurrency”

is achieved through attention (and positional encoding)
- self-attention for encoder inputs
- self-attention for decoder inputs (up to current token)
- encoder-decoder attention
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Attention in Transformer connects different parts of the input
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Each word is represented as a key, a query and a value, all with distinct weights

Input Thinking Machines
Embedding [ | [ 1 x: L]
Queries g « DI
Keys (111 LT
Values vv L v TN

Each of g/k/V's use multiple weight matrices (*heads”), not only one
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Hard attention and biasing the attention distribution

Make a zero-one decision about where to attend (i.e. uses a single sample instead
of a distribution)

- harder to train (reinforcement learning)
Other approaches to encouraging sparsity: gumbel softmax, Gaussian noise

W hile most often we don’t have access to attention’s target distribution,

sometimes knowledge about the desired weight distribution may be available, e.g.

- relevant sentences in a document are somehow marked,
- pre-trained attention weights exist from another task.
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Two-way attention and co-attention

Represent the query as a matrix; QeR"@*d(d
Energy (“affinity”) scores: E=f(Q, K), EER%@>d(X

Then the normalisation direction (row- vs. column-wise) on E determines whether
we get attention weights for keys or values:

AR = g(E)eRd@x*d(K
AK — g(ET)ERd(k)Xd(q)

E.g. instead of representing a sentence with a single vector (say, final LSTM state),
have one vector per word

- word-by-word attention in textual entailment (Rocktaschel et al., 2015)

- document word-question word attention in QA (Xiong et al., 2016)
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Attention for reading from memory



Attention in a simple memory network
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Attention keys and values can be obtained from different inputs
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4 Contribution

Attention in other fields

Vision

- image captioning, e.g. Xu et al. (2015)

- object classification, e.g. Mnih et al. (2014)

Speech recognition

- encoding feature vectors from audio frames and

decoding into sequence of phonemes

(Chorowski et al., 2015)

Clinical sequential modeling
- salient medical codes for prediction of heart

failure (Choi et al., 2016)
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