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Machine comprehension
CNN/Daily Mail Cloze Dataset

Passage p

( @entity4 ) if you feel a ripple in the force today , it may be the
news that the official @entityé is getting its first gay character .
according to the sci-fi website @entity? , the upcoming novel "
@entity11 " will feature a capable but flawed @entity13 official
named @entity14 who " also happens to be a lesbian . " the
character is the first gay figure in the official @entity6 -- the
movies , television shows , comics and books approved by
@entity6 franchise owner @entity22 -- according to @entity24 ,
editor of " @entityé " books at @entity28 imprint @entity26 .

Query g

characters in " @placeholder "
movies have gradually become
more diverse

Answer a
@entity6



Machine comprehension

Encode passage p
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Use (any flavor of) RNN to encode passage
and query.



Machine comprehension

Encode passage p Use (any flavor of) RNN to encode passage
and query.

h [T h T hs[™™ by

e \We could predict an answer directly from p

h,7 h,rs 1 h,* =<fh- and q.

e But T can be large (documents), which is
problematic for RNNs .

1 2 3 T
p = concat(h, h,) Can we somehow select the information
relevant to the query?
Encode query g e Attentive reader (Chen et al. 2016,

Hermann et al. 2015)
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Depends somewhat on chosen flavor.



Encode passage p

a are attention weights. They form
a probability distribution.

hy [P hy 7 hs ™™ 7 hy Model gives a prediction by:

- building the output vector
By e <Ay 0=3ap

- and predicting the answer
X, X, X X, a = best_answer,__,(0).

p, = concat(h, h)

Encode query g Obtaining as:
== — e a = softmax qui
h, M h, [ hs™ 7hy e a = softmax q"Wp.

e o=MLP(g,p)
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Annotating passage with attention weights
(Hermann et al. 2015)

by ent18 ,for ent65 updated 7:28 pmet ,sat march28 ,
2015 ent73 ,ent64 (ent65 ) suspected ent53 gunmen
decapitated 23 people in a raid onent80 village in northeast
-idents and a politician said saturday .
scores of attackers invadedthe village at 11p.m.friday
when residents were mostly asleep and set homes onfire,
hacking residents who tried to flee . the gunmen
slaughtered their 23 victims like rams and decapitated
them .they injured several people ," said ent47 ,alocal

politicianwho fled .

suspected militants raid village in X



Neural machine translation

Translate Turn off instant translation o

French English Dutch Detectlanguage -~ - Dutch English Slovenian -

X

Ik doe het niet zonder jullie.| | will not do it without you.

) B v 30/5000 wig o < # Suggest an edit

Can model p(target|source) in an end-to-end way



A simple neural MT model

Encode the source

Decode into target

Use an RNN to forward-encode
Use an RNN to
backward-encode

Concatenate —«—states

For decoding, another RNN is
used, which has access to a
representation h

h is invariant during decoding!
Will work OK only for very short
sentences



Adding attention (Bahdanau et al. 2014, Luong et al. 2015)

Decode into target

Encode the source

B | ; . e FEach output y. depends on a
ho o h e | weighted sum of all input states
L s | e 1 | | T|i e Score:e.qg. a; = softmaxj thsi
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Adding attention (Bahdanau et al. 2014, Luong et al. 2015)

Decode into target
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B | ; . e FEach output y. depends on a
ho o h e | weighted sum of all input states
L s | e 1 | | T|i e Score:e.qg. a; = softmaxj thsi




Adding attention (Bahdanau et al. 2014, Luong et al. 2015)

Decode into target

Encode the source

Attention in MT is “discovering”
alignment: high Q;;means y, IS a
likely translation of X,



Alignment matrix from attention weights
(Bahdanau et al. 2014)
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