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Word representations

. Categorical or vectorial object associated with a word

. Way of telling which words are (semantically) similar

. Improve generalization in NLP applications

Definition of context:
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Goals

1 Reproducing [Grave et al., 2013]:
dependency trees provide better context than sequences

2 Extend tree HMMs with syntactic functions
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Model introduction

Based on Hidden Markov tree models
. Word representation from the hidden layer
. Think of state as semantic class
. Number of states set beforehand
. Context-sensitive decoding (polysemy)
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Decoding

. Categorical: max-product (Viterbi)
or

. Continuous: state posterior distribution

. Context-sensitive
or

. Static
1 average posterior distributions per word type
2 then use these vectors when needed (context-insensitive)
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Training

. Online EM with sum-product message passing
. state splitting, final 128 states
. Brown initialization
. sparse approximate vectors
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Why syntactic functions

. Prevent sharing same parameters by all children of a node

. Account for (semantically) different children across syntactic
functions
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Discriminating between types of contexts

Syntactic function: additional observed variable in the model
. Modulates transitions and emissions,

cf. [Bengio and Frasconi, 1996]
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Named entity recognition

Evaluate on CoNLL tasks for English and Dutch

Approach
. Structured averaged perceptron
. Several lexical features as baseline [Turian et al., 2010]
. Add word representations (128-dimensional) as features



Dutch NER

73.07

+1

+2

+3

+4

BROWN DEP−BROWN WORD2VEC HMM TREE−HMM SYNFUNC−HMM

F−
sc

or
e



English NER

−1.5

−1

−0.5

78.69

+0.5

+1

+1.5

BROWN DEP−BROWN WORD2VEC HMM TREE−HMM SYNFUNC−HMM

F−
sc

or
e



15

Frame-semantic parsing

. Which predicate evokes which frame
(frame identification)

. Which are the arguments constituting the frame
(argument identification)

. Semafor [Das et al., 2014]

. FrameNet
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Contributions

1 Reproducing [Grave et al., 2013]:
dependency trees provide better context than sequences

. not robust
2 Extend tree HMM with syntactic functions

. works in certain cases
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