Tree models, syntactic functions and word representations

Simon Šuster*, Gertjan van Noord* and Ivan Titov◊

*University of Groningen, [◊]University of Amsterdam

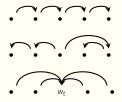
WORD REPRESENTATIONS

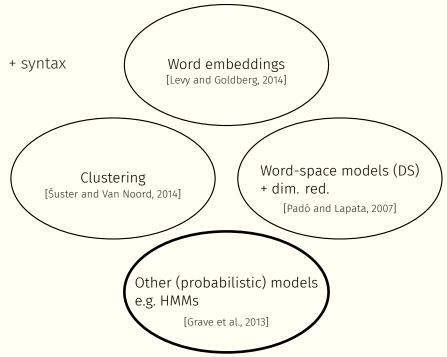
- Categorical or vectorial object associated with a word
- > Way of telling which words are (semantically) similar
- Improve generalization in NLP applications

WORD REPRESENTATIONS

- Categorical or vectorial object associated with a word
- > Way of telling which words are (semantically) similar
- Improve generalization in NLP applications

Definition of context:





GOALS

- 1 Reproducing [Grave et al., 2013]: dependency trees provide better context than sequences
- 2 Extend tree HMMs with syntactic functions

MODEL INTRODUCTION

Based on Hidden Markov tree models

- Word representation from the hidden layer
- Think of state as semantic class
- Number of states set beforehand
- Context-sensitive decoding (polysemy)

Decoding

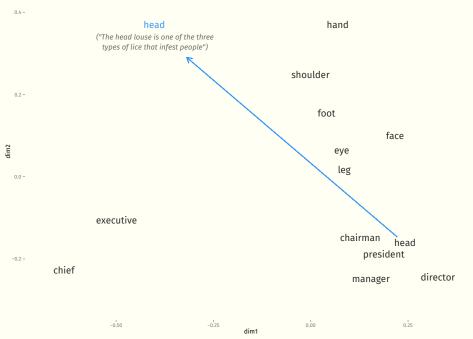
- Categorical: max-product (Viterbi) or
- Continuous: state posterior distribution
- Context-sensitive

or

- Static
 - 1 average posterior distributions per word type
 - 2 then use these vectors when needed (context-insensitive)

		Static/					
0.4 -			hand				
0.2 -	shoulder						
	foot						
dim2					eye	face	
- 1 5					leg		
0.0 -							
		executive					
-0.2 -				chairman _{head} president			d
	chief					manager	director
		-0.50	-0.25	dim1	0.00	0.2	5

Static/context-sensitive



TRAINING

Online EM with sum-product message passing

- state splitting, final 128 states
- Brown initialization
- sparse approximate vectors

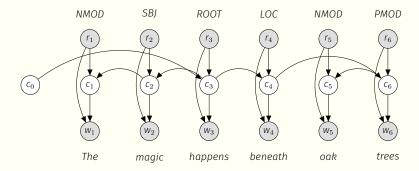
WHY SYNTACTIC FUNCTIONS

- Prevent sharing same parameters by all children of a node
- Account for (semantically) different children across syntactic functions

DISCRIMINATING BETWEEN TYPES OF CONTEXTS

Syntactic function: additional observed variable in the model

 Modulates transitions and emissions, cf. [Bengio and Frasconi, 1996]



In practice, can't get reliable estimates for all syntactic functions

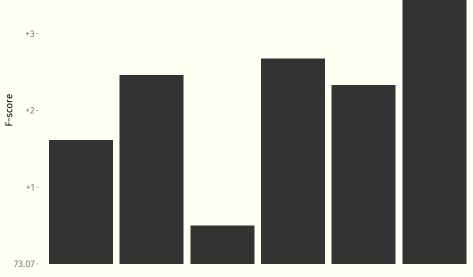
NAMED ENTITY RECOGNITION

Evaluate on CoNLL tasks for English and Dutch

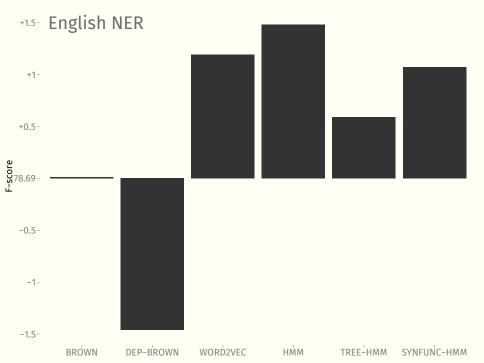
Approach

- Structured averaged perceptron
- Several lexical features as baseline [Turian et al., 2010]
- Add word representations (128-dimensional) as features

+4- Dutch NER



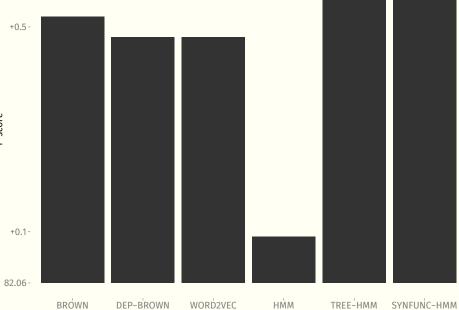
BRÓWN DEP-BROWN WORDZVEC HMM TREE-HMM SYNFUNC-HMM



FRAME-SEMANTIC PARSING

- Which predicate evokes which frame (frame identification)
- Which are the arguments constituting the frame (argument identification)
- Semafor [Das et al., 2014]
- FrameNet

+0.6- Frame-semantic parsing



BRÓWN WORD2VEC НММ TREE-HMM DEP-BROWN

F-score

CONTRIBUTIONS

- 1 Reproducing [Grave et al., 2013]: dependency trees provide better context than sequences
 - not robust
- 2 Extend tree HMM with syntactic functions
 - works in certain cases

- Bengio, Y. and Frasconi, P. (1996). Input-output HMMs for sequence processing. IEEE Transactions on Neural Networks, 7(5).
 - Das, D., Chen, D., Martins, A. F. T., Schneider, N., and Smith, N. A. (2014).
 Frame-semantic parsing.

Computational Linguistics, 40(1):9–56.

- Grave, E., Obozinski, G., and Bach, F. (2013). Hidden Markov tree models for semantic class induction. In *CoNLL*.
- Levy, O. and Goldberg, Y. (2014). Dependency-based word embeddings. In ACL.
- Padó, S. and Lapata, M. (2007).
 Dependency-based construction of semantic space models.
 Computational Linguistics, 33:161–199.
- Turian, J., Ratinov, L., and Bengio, Y. (2010).

Word representations: a simple and general method for semi-supervised learning. In *ACL*.

Šuster, S. and Van Noord, G. (2014). From neighborhood to parenthood: the advantages of dependency representation over bigrams in Brown clustering. In COLING.