
From perceptrons to word embeddings

Simon Šuster
University of Groningen

Outline

A basic computational unit

Weighting some input to produce an output: classification

Perceptron

Classify tweets

Written in English or not?

• Each input instance x (tweet) is a vector

• Each element in the vector represents a feature that captures
information useful for prediction

• Each x i has its corresponding weight w i

x1 : “the”, w1 : 1

x2 : “-ing”, w2 : -3

x3 : “lol”, w3 : -1

Perceptron structure

• Sum of weighted input features (“activation”)

• The value sign indicates whether to fire or not

• Decision boundary is shifted by some value x0 (“bias”)

• Bias has fixed value (1), its weight learnt as any other

Perceptrons learn by error

• Initialize weights to 0

• Adjust weights only when prediction is wrong:

• decrease the weights of features that fired
• increase the weights of features that didn’t

• Multiple passes (epochs) through data

Example training instance
y =1 (“en”)

x1 : 1, w1 : 1

x2 : 1, w2 : −3

x3 : −1, w3 : −1

with current w gives ŷ =−1
so, update weights by adding yx

Feedforward neural networks

Perceptron can learn linear decision surfaces only
Idea: stack perceptrons together, with a change:

Sigmoidal activation function

Why? Can’t find good weights with a discontinuous function like
sign...

NN structure

• Each sigmoid neuron is a unit computing σ(w · x)

• That’s logistic regression:

• probability of y = 1|x

• Units arranged in layers

• Roughly, #output units is #output classes

in optical digit recognition ⇒ 10 output classes
in language modeling ⇒ size of vocabulary

• Left-to-right computations

• No backward connections (true for recurrent networks)

W(1) W(2)

z1 (2)

z2 (2)

z3 (2)

z(2) =W(1) ·x

a(2) = σ(z(2))

Forward propagation

Each unit produces a weighted linear combination of inputs
Passed through the activation function g (not necessarily sigmoid)

In general:

• a(2) = g(W(1)x)

• a(3) = g(W(2)a(2))

• a(4) = g(W(3)a(3))

• . . .

Cost

Given activations at output units, calculate current cost/loss/error

• How good/bad we are at predicting the current instance?

• In general, difference between our predictions and target classes
(entire dataset)

Common choice

• quadratic cost

• negative log likelihood (cross-entropy): −log(pright), . . .

How to find weights leading to minimal loss (local minimum)?

Backpropagation and gradient descent

Find (local) minimum of a cost function J with gradient descent:

• compute partial derivative (slope) of J along each dimension
(w i)

• (vector of all this derivatives is the gradient defining the direction
of steepest descent)

• use the derivative (i.e. error) as update value

• goes backward (right-to-left): error at a node to the left depends
error to the right

1 apply network to current example

2 calculate error of the network output

3 calculate error at previous units (backpropagate)

4 update all weights in the network

Backpropagation and gradient descent

Find (local) minimum of a cost function J with gradient descent:

• compute partial derivative (slope) of J along each dimension
(w i)

• (vector of all this derivatives is the gradient defining the direction
of steepest descent)

• use the derivative (i.e. error) as update value

• goes backward (right-to-left): error at a node to the left depends
error to the right

1 apply network to current example

2 calculate error of the network output

3 calculate error at previous units (backpropagate)

4 update all weights in the network

Activation function: softmax

Remember sigmoid: 1
1+e−w·x

• pc1 of one output class

• pc2 = 1− pc1

With >2 classes: softmax

p(c = i |x) =
ewi ·x∑
jewj ·x

Converts an arbitrary real-valued vector into a multinomial probability
vector

Activation function: softmax

Remember sigmoid: 1
1+e−w·x

• pc1 of one output class

• pc2 = 1− pc1

With >2 classes: softmax

p(c = i |x) =
ewi ·x∑
jewj ·x

Converts an arbitrary real-valued vector into a multinomial probability
vector

Log-linear models

Logistic regression
Linear combination of weights and features to produce a probabilistic
model ⇒ softmax

• estimate p that y = 1 based on x , under current parameters

• p(y = 1|x)
• use threshold for classification (0.5)

• p(y = 0|x) = 1− p(y = 1|x)

• typically use ML-based cost, i.e. negative log likelihood

• gradient-based optimization

A note on deep learning

“in order to learn the kind of complicated
functions that can represent high-level
abstractions (e.g., in vision, language,
and other AI-level tasks), one may need
deep architectures. Deep architectures
are composed of multiple levels of
non-linear operations, such as in neural
nets with many hidden layers”
(Y. Bengio 2009 Learning Deep Architectures for AI)

None of techniques in this talk are deep

Previously

Perceptron as a simple classifier

• weighted sum of inputs (w · x)

Sigmoidal neurons extend perceptrons by using a smooth activation
function

• probability as output (σ(w · x))

• logistic regression

• softmax generalizes the sigmoid function to many outputs

Stacking neurons into a network

• layers, units

• weight updates with gradient-based techniques

• backpropagation: efficiently compute node errors

Language models

p(w t |w t−1 ,w t−2 , ...) = p(w t |ht)

N-grams

• Count-based

• Smoothing, back-off techniques

Applications

• Spelling correction: find improbable sequences

• Machine translation: find most probable realization in target
language

Neural probabilistic language models
(NPLM)

Idea

• Model with a neural network instead of with n-grams

• Can simply keep the form of a feedforward neural network
(Bengio et al. 2003)

• Crucially, discrete ⇒ continuous word representations

• And learn them together with other network parameters
• Extra layer to accomodate these parameters

Goal
Predicting target word w t given some input ht (history)
(< x : ht , y : w t >: training instance)

NPLM: input representations

Input

• Previous context words act as features

• Word indices encoded as one-hot

• E.g. Word index 3 encoded as 1 at 3rd position: [0 0 0 1 0]
• Using these directly ⇒ overfitting, efficiency?

Projection

• Map input to a representation indicative of word similarity

• embedding, distributed/continuous representation (n-dim.)

• Conceptually, projection layer obtained with a product of
one-hot vector and embedding matrix

• Concatenate context word embeddings: real input to NN

NPLM: input representations

Input

• Previous context words act as features

• Word indices encoded as one-hot

• E.g. Word index 3 encoded as 1 at 3rd position: [0 0 0 1 0]
• Using these directly ⇒ overfitting, efficiency?

Projection

• Map input to a representation indicative of word similarity

• embedding, distributed/continuous representation (n-dim.)

• Conceptually, projection layer obtained with a product of
one-hot vector and embedding matrix

• Concatenate context word embeddings: real input to NN

NPLM: obtaining outputs

Hidden layer

• Process output of projection layer, #units is a parameter to be
tuned

• Sum of weighted projection activations + sigmoid-like function
(“squashing”)

Output

• #classes = |vocabulary|
• for every word in vocabulary: p(w t = i |ht)

• softmax for proper probability distribution

• most computationally-intensive part ⇒ many variations

NPLM generalize well

N-grams

• During testing: indoor kitten escaped

• Suppose our model doesn’t know about this trigram

• Use a kind of back-off (indoor kitten)

• Similar indoor cat escaped might be in the model, but no way
of knowing the trigrams are similar. . .

NPLM

• Input representation for test sequence relies on word
embeddings, which are similar for both kitten and cat

• (why? kitten and cat occured in similar contexts during training)

• Can outperform n-gram models

• Extensions: recurrent formulation

• (level of abstraction is a function of distance of context words)

NPLM generalize well

N-grams

• During testing: indoor kitten escaped

• Suppose our model doesn’t know about this trigram

• Use a kind of back-off (indoor kitten)

• Similar indoor cat escaped might be in the model, but no way
of knowing the trigrams are similar. . .

NPLM

• Input representation for test sequence relies on word
embeddings, which are similar for both kitten and cat

• (why? kitten and cat occured in similar contexts during training)

• Can outperform n-gram models

• Extensions: recurrent formulation

• (level of abstraction is a function of distance of context words)

Similar embeddings

NPLM embeddings

Word embeddings are network weights just as any other

• Start with randomly initialized weights

• Update with gradient descent/backpropagation

• Gradient of the loss function (cross-entropy) for the weight
vector

• maximize p = maximize log(p) = minimize −log(p)

Scalability

How to use NPLM with large vocabularies (100,000 or more)?

• Bottleneck: softmax at output

• normalization over entire vocabulary for each training instance

Solutions

• Hierarchical softmax (tree-structured vocabulary)

• Perform probabilistic binary classification

• discriminate between samples coming from data and “noisy”
samples

• Remove hidden layer

Embeddings without language models
Mikolov et al. 2013, Mnih and Kavukcuoglu 2013

How to obtain embeddings efficiently
(Gain in quality was not an original motivation)

Compared to NPLM

• Language-model probabilities not needed

• Context can be anything (past/future) ⇒ advantageous

• Hidden layer removed for speedup ⇒ comparable quality

Two ways of modeling

• predict target word (w t) from context words (w c):

• • w t • •

• predict context word (w c) from target word (w t):

• • w t • •

Embeddings without language models
Mikolov et al. 2013, Mnih and Kavukcuoglu 2013

How to obtain embeddings efficiently
(Gain in quality was not an original motivation)

Compared to NPLM

• Language-model probabilities not needed

• Context can be anything (past/future) ⇒ advantageous

• Hidden layer removed for speedup ⇒ comparable quality

Two ways of modeling

• predict target word (w t) from context words (w c):

• • w t • •

• predict context word (w c) from target word (w t):

• • w t • •

CBOW • • w t • •

1 obtain predicted representation of target word:

• just sum of context word vectors (order thus ignored ⇒ BoW)

2 compare similarity: z = ŵt ·wt

3 output g(z), where g :

• (fast variant of) softmax
• via negative sampling

Try to maximize the dot product

• analogies using vector arithmetics come from this linear
relationship

Skip-gram • • w t • •

Predict context word based on a target word
Consider each context separately (skip-gram)
Input is just w t ,w c pairs extracted from all windows in the corpus

(As for CBOW:)

• Each target is embedding

• Each context is embedding

• Target and context parameters are distinct

• i.e. one embedding matrix for target, one for contexts
• typically only the target matrix is used in NLP tasks

Skip-gram model • • w t • •

p(w c = i |w t) =
ewc i ·wt∑
jewc j ·wt

• Running a logistic regression

• But update weights of both embedding matrices

Optimization criterion

• log p(w c |w t) (update weights with gradient of the likelihood)

• alternatively, negative sampling (noise-contrastive estimation)

Negative sampling

Intuition

• Could maximize p(D = 1|w t ,w c) under current set of weights

• Yields two-class logistic regression: σ(wc ·wt)

• But wouldn’t lead to interesting embeddings

• Setting all w to be the same would maximize all dot products
and give p = 1

• So, incorporate pairs for which p(D = 1|w t ,w c) must be low

Construct negative pairs (k extra pairs per training instance)

• Replacing context word with a random word

Find weights discriminating well between positive and negative pairs

• High p(D = 1|w t ,w c)

• High p(D = 0|w t ,w c rand)

Negative sampling

Intuition

• Could maximize p(D = 1|w t ,w c) under current set of weights

• Yields two-class logistic regression: σ(wc ·wt)

• But wouldn’t lead to interesting embeddings

• Setting all w to be the same would maximize all dot products
and give p = 1

• So, incorporate pairs for which p(D = 1|w t ,w c) must be low

Construct negative pairs (k extra pairs per training instance)

• Replacing context word with a random word

Find weights discriminating well between positive and negative pairs

• High p(D = 1|w t ,w c)

• High p(D = 0|w t ,w c rand)

Rare word threshold and sub-sampling
word2vec-specific

Discard rare words from input
Downsample frequent words: pairs like < France, the > less
informative

• These steps performed before obtaining pairs

• Words further away take place of discarded words

• Effectively increases the window size (!) Goldberg and Levy 2014

Sources

Y. Bengio et al. (2003) “A Neural Probabilistic Language Model”
Y. Goldberg and O. Levy (2014) “word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding
method”
T. Mikolov et al. (2013) “Efficient Estimation of Word Representation in Vector Space“
T. Mikolov et al. (2013) “Distributed Representation of Words and Phrases and their Compositionality”
A. Mnih and K. Kavukcuoglu (2013) “Learning word embeddings efficiently with noise-contrastive estimation“

Blackwood: Neural Network-based LMs for Conversational Telephone Speech recognition
Michael Nielsen: Neural networks and deep learning (e-book)
Hugo Larochelle: YouTube lectures
Piotr Mirowski: Neural language models and word embeddings (ppt)
Andrej Karpathy: Hacker’s guide to Neural Networks

Image courtesy

Image 5: Tom M. Mitchell
Image 6: Twitter
Image 7: http://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logistic-curve.svg/

1280px-Logistic-curve.svg.png

Image 8: http://www.codeproject.com/KB/dotnet/predictor/network.jpg

Image 24: Hugo Larochelle Image 10: Andrew Ng
Image 16: Yoshua Bengio
Image 22: Y. Bengio et al. 2003 A Neural Probabilistic Language Model
Images 29, 31: T. Mikolov et al. 2013 Efficient Estimation of Word Representations in Vector Space

http://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logistic-curve.svg/1280px-Logistic-curve.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/8/88/Logistic-curve.svg/1280px-Logistic-curve.svg.png
http://www.codeproject.com/KB/dotnet/predictor/network.jpg

