
Simon Šuster, University of Groningen

Course Learning from data
December 2, 2013

Some slides adapted from Andrew Ng
• Hal Daumé III: A Course in Machine Learning
 http://ciml.info

• C. D. Manning, P. Raghavan, H. Schuetze: Introduction to Information Retrieval
Supervised learning I
Supervised vs. unsupervised learning

- Labeled vs. unlabeled data
- Unsupervised learning tries to find structure in the data
- Clustering: the structure is clusters
- Clusters are groups of objects similar to each other
- What is the right set of clusters?

- Some other types of unsupervised learning:
 - Dimensionality reduction
 - Novelty/anomaly detection
Applications

- Search results
- Social network analysis
- Word clusters (e.g. semantic coherence)
- Linguistic typologies
K-means

- Very popular clustering algorithm
- In its standard form ⇒ hard clustering
- Flat ⇒ partitioning, no hierarchy
K-means process

- Choose K (number of clusters)
- Initialize K centroids

Repeatedly perform these 2 steps:

1. Cluster assignment:
 - Points are assigned the class of the closest centroid

2. Move centroid
 - Move centroid to the average of the points of the same cluster

After a number of iterations, centroid/assignments don’t change anymore
K-means algorithm

Initialize K cluster centroid vectors $\mu_1, \mu_2, \ldots, \mu_K$
Repeat:

for $i = 1$ to m

$c^{(i)} :=$ index (from 1 to K) of centroid closest to $x^{(i)}$
(distance measured by $||x^{(i)} - \mu_k||^2$)

for $k = 1$ to K

$\mu_k :=$ average of points assigned to cluster k

Practical issues:

- If you end up in an empty cluster, remove it (leaving $K - 1$)
- In case of ties when assigning examples to clusters, resolve in a consistent way, e.g. take lowest index
The algorithm is optimizing this cost function:

\[J(c^{(1)}, \ldots, c^{(m)}; \mu_1, \ldots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} \| x^{(i)} - \mu_{c(i)} \|^2 \]

- That's mean of squared distances between examples and their corresponding centroids.

Why is it useful to know about this?

- Cost function should decrease with every iteration.
- Observing convergence and avoiding local optima.
How do we initialize the centroids?

- randomly pick K examples
- set $\mu_1, ..., \mu_K$ equal to these K examples

($\mu_1 = x^{(i)}, ...$)
Unsuccessful initialization
Multiple random initialization

To increase the chance that K-means finds the best possible clustering:

- multiple initialization
- run K-means many times
- choose the best clustering by computing cost function (lowest J)

For large K (around >100), multiple random initialization does not make huge differences
Global optimum
Choosing K I

- No principled way of choosing K
- For that reason, sometimes other clustering techniques are preferred
- K mostly determined manually
- Looking at clusters, often no single truth to the number of clusters
Choosing K II

- Application-motivated
Choosing K III

- "Elbow" / "Knee" method
 - Using cost function J
 - Observe the decrease of J as a function of K
 - Plot
 - Choose K at "elbow"