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Regression vs. classification

• Predictions in regression are real-valued
• prices
• age
• student success
• vowel length. . .

• Supervised; ground-truth is now continuous



Modeling in LR

• Fitting a model to the training data that generalizes well to
unseen data

• Hypothesis/model/function

• The model is a function that knows how to map x to y



One-feature example



Note about linearity

• Linear regression can model non-linear hypothesis!

• Linearity is about how the parameters are combined

• Complex functions can be represented by a linear combination of
(expanded) features



Hypothesis

• Parameters (weights) represented by Theta, Θ

• With one feature only:

hΘ(x) = Θ0 + Θ1x1

• geometrical interpretation: intercept and slope

• Multiple features:

hΘ(x) = Θ0 + Θ1x1 + Θ2x2 + ... + Θnxn

for convenience, x0 = 1

hΘ(x) = Θ0x0 + Θ1x1 + Θ2x2 + ... + Θnxn

= ΘTx

(Have we seen similar operations in a previous lecture?)

• example interpretation:
price = Θ0 + Θ1Size + Θ2Age + Θ3#Floors...
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Cost function J

How to fit the best possible model to our training data?

• Find Θs that minimize the cost

• Cost is squared error ⇒
• Minimizing squared difference between predicted output and true

output (hΘ(x)− y)2

• Complete form of J is one half of the average of squared
differences over all training instances



Error as vertical lines



Two parameter surface plot for cost function



Minimizing J I

Best parameters are the ones leading to smallest J.

Gradient descent

• Finds (local) minimum of a function

• Cost function J is bowl-shaped (convex)

• GD thus finds the global minimum

• Way of knowing at which point on the function we are/how to
get to the minimum?

• Calculate derivative/gradient at that point ⇒ slope

• When slope is 0, we’ve reached the minimum



Minimizing J II

• Start with some parameters Θ

• Repeat until converged∗

• Update parameters with derivatives (gradient) of J for current Θ

- Must get to the minimum, so subtract the derivatives

(Parameters now better, closer to the minimum)

Example on blackboard

• Suppose we only have Θ1

• Compute derivative of J(Θ1)

⇒ 1
m

∑m
i=1(hΘ(x (i))− y (i))x (i)

• Update Θ1

∗derivative small; J not changing sufficiently



Blackboard example prediction



Expanded features

• Allow modeling of non-linear relationships

• Including polynomial terms (e.g. x2, x3)



Fit and complexity of hypothesis



Under-/Overfitting I

• With many features, can’t select the order of feature complexity
by visualizing

• Having a lot of features, not so much training data

Overfitting

• trying to fit the training data to closely

• solution not general enough to be applied successfully to unseen
data

Solutions

• Remove some features ⇒ Potentially harmful

• Better keep features but reduce values of parameters



Under-/Overfitting II

• Reduced values mean smoother, simpler functions

• Less overfitting

• Can think of it as penalizing solutions we want to discourage

• One type of regularization:
• add sum of squared parameters to cost J

- control how much to add (penalize) by a value λ

- when λ is very small/zero ⇒ no regularization (more likely to
overfit)

- high λ ⇒ prefer simpler models (more likely to underfit)

• Called “ridge regression”



Conclusion

• This was a brief introduction

• Many ways of optimization exist

• Closed form solutions to find parameters

• Different regularization techniques

• Weka includes ridge regression



Nominal features (and Weka)

Suggestion:

• Convert nominal feature with n levels to n binary features

• Example in housing price prediction: “neighborhood” as 1
feature needs converting to features for each neighborhood

• Weka: use unsupervised NominalToBinary filter

• (Weka can also do automatic supervised NominalToBinary
conversion which is less intuitive to interpret)



Final project

• Predicting opening-weekend revenue for movies from critic
reviews

• Meta-information and reviews

• Dataset: www.ark.cs.cmu.edu/movie$-data/

• Allowed to use train+dev
• Reviews in /net/shared/simsuster/movies-data-v1.0/
7domains-train-dev.tl/ are or will be:

- segmented with Splitta
- POS-tagged with Citar
- Dependency parsed with MSTParser

• Concentrate on predicting overall revenue, not per screen

• Joshi et al.: “Movie Reviews and Revenues: An Experiment in
Text Regression”

www.ark.cs.cmu.edu/movie$-data/
/net/shared/simsuster/movies-data-v1.0/7domains-train-dev.tl/
/net/shared/simsuster/movies-data-v1.0/7domains-train-dev.tl/

