
The Perceptron

Simon Šuster, University of Groningen

Course Learning from data
November 18, 2013



References

• Hal Daumé III: A Course in Machine Learning
http://ciml.info

• Tom M. Mitchell: Machine Learning

• Michael Collins, 2002: Discriminative Training Methods for
Hidden Markov Models: Theory and Experiments with
Perceptron Algorithms

Some slides are adapted from Luke Zettlemoyer and Xavier Carreras.

http://ciml.info


You’ve seen Naive Bayes

• Model-based

• Generative: joint probability (x,y)

• Assumes independence between features given label

• One pass through data



The Perceptron

is different from the Naive Bayes:

• Mistake-driven

• Often no probabilities

• Discriminative: predicting y directly from x

• Iterative

• Accuracy often comparable to more complex algorithms

• Robust: good accuracy in presence of redundant/irrelevant
features



Biological inspiration



Geometric intuition I

• Want to find a way of separating data points in a hyperspace
(with a hyperplane)

• In a low dimensional space (2D, two features), find a line that
separates the points

⇒ finding a weight vector that will separate the points

• start with some random line
• a data point comes in
• if it’s on the wrong side of the line, move the line









Perceptron algorithm outline

Repeat for a specified number of times:

Prediction step

• For each training instance, make a prediction (compute
activation) with the current set of weights

Update step
• If the prediction is correct, don’t change the weight vector
• If it’s incorrect, update the weights

For a wrongly classified instance, the perceptron should do better
next time around



Representation

x: vector of n features (values) for a single instance
w: vector of n weights
y : class label

xn,1 =


x1,1
x2,1

...
xn,1

 wn,1 =


w1,1

w2,1
...

wn,1

 y =∈ {−1, 1}



Learning model I

• Activation a is the outcome score, used in both training and
testing.

• It’s about making prediction for a single instance (online) with
the current set of weights.

a =
N∑

n=1

wnxn

= wTx

• Detail: shift the decision point by b (bias):

a = wTx + b



Learning model II

Testing
Assume we have already figured out w and b, then the output of the
classifier is simply:

• computing activation a for the current test instance x̂ (see
previous slide)

• applying the SIGN function

ŷ = SIGN(a) a0



Learning model III

Training How do we learn w and b?
Perceptron is mistake driven:

• Start with some initial w

• For each training instance, do prediction (activation)

• If ya > 0, do nothing

• If ya ≤ 0, update the weights:

w = w + yx
b = b + y





Practical notes I

Hyperparameter

• The perceptron has one hyperparameter, MaxIter: number of
passes through the training data

• 1 is usually not enough

• Too many iterations also not desirable

• Overfitting the training data



Practical notes II

When to stop?

• “early stopping”

• use a held-out set
• measure performance with a current set of weights
• stop when performance plateaus



Practical notes III

Separability

• We want to find a separating hyperplane, but that’s possible
only when data is linearly separable

• Often, that might not be the case: linguistic problems?

• In that case, find a best-fit approximation

• find the optimal separating plane by gradient descent



Practical notes IV

Convergence

• It always converges if the data is linearly separable

• After how many iterations?

• Depends on the learning problem
• Harder problems have smaller margins



Practical notes V

Presentation of training instances

• If we first present all positive instances, and then all negative
instances?

• A bad classifier because it “remembered” mostly negative
instances

• Permute the training data before starting

• Can permute before each iteration, influencing convergence rate
as well



Extensions: multiclass perceptron

• Every class has its own weight vector, wy

• Predict the class whose weight vector produces the highest
activation

• If correct, do nothing

• If wrong, update the weights:
• downweight score of wrong answer:

wy = wy − x
by = by − 1

• increase score of right answer:
wy∗ = wy∗ + x
by∗ = by∗ + 1



Extensions: voted and averaged perceptrons I

• Differ in the weight update step

• Often perform better (improved generalization)

• Fixed (ordered) data presentation can be harmful for ordinary
perceptron

• It puts too much emphasis to later instances

• Solution: make it harder to override weights that survived a long
time



Extensions: voted and averaged perceptrons II

Voting

• in training, remember how long weight vectors survive

• when testing, use counts for weighted majority vote

• likely to work better than ordinary perceptron, but requires
storing all weight vectors

Averaging

• similarly to voting, maintain all weight vectors

• compute the average weight vector

• when testing, more efficient than voting



Extensions: structured perceptron

• Used often in NLP (tagging, NER, parsing)

• Given a sentence, predict its POS-tag sequence

• Ordinary perceptron can deal with atomic outputs but not
sequences

• How do we make predictions for sequences?
• Use factored representations (indicator features), e.g. look at

bigrams of output labels
• example: “previous/JJ 20/CD years/NNS”
• if word at position 3 is “years”, its tag is NNS, and previous tag

is CD ⇒ a feature scores 1

• Then sum these feature vectors

⇒ Best sequence found with Viterbi algorithm given current weights

• Weight update step similar to multiclass perceptron:
• Incorrect features in a sequence are downweighted
• Correct features are increased


